A discrete maximum principle for solving optimal control problems

We develop a discrete maximum principle that yields discrete necessary conditions for optimality. These conditions are in agreement with the usual conditions obtained from the Pontryagin maximum principle and define symplectic algorithms that solve the optimal control problem. We show that our approach allows one to recover most of the classical symplectic algorithms and can be enhanced so that the discrete necessary conditions define symplectic-energy conserving algorithms. Finally we illustrate its use with an example of a sub-Riemannian optimal control problem.

[1]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[2]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[3]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[4]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[5]  Daniel J. Scheeres,et al.  AAS 03-575 Solving optimal control problems with generating functions , 2003 .

[6]  B. W. Jordan,et al.  Theory of a Class of Discrete Optimal Control Systems , 1964 .

[7]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[8]  Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems , 2004, math/0409296.

[9]  On the invariance of generating functions for symplectic transformations , 1995 .

[10]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[11]  The discrete variational approach to the Euler-Lagrange equation , 1990 .

[12]  Yosi Shibberu Time-discretization of Hamiltonian dynamical systems☆ , 1994 .

[13]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[14]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[15]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .

[16]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[17]  J. Gregory,et al.  Constrained optimization in the calculus of variations and optimal control theory , 1992 .

[18]  Jerrold E. Marsden,et al.  The symmetric representation of the rigid body equations and their discretization , 2002 .

[19]  Total Variation and Variational Symplectic-Energy- Momentum integrators , 2001, hep-th/0109178.