Structures, properties and applications of Cu(II) complexes with tridentate donor ligands.

Tridentate ligands offer theree donor atoms to coordinate to metal ions. The remaining vacant coordination sites on the metal ions provided opportunities to implement additional co-ligands to generate complexes with desired properties. Herein we discuss selected examples of Cu(ii) complexes with tridentate ligands utilizing combinations of N, O, S, and Se donors, focusing on effects of ligand flexibility/rigidity on their coordination modes, properties and applications.

[1]  R. Peralta,et al.  Cu(ii) complexes with tridentate sulfur and selenium ligands: catecholase and hydrolysis activity , 2020 .

[2]  A. Somboro,et al.  Molecular mechanisms underlying the renoprotective effects of 1,4,7-triazacyclononane: a βeta-lactamase inhibitor , 2020, Cytotechnology.

[3]  F. Mancin,et al.  Toward supramolecular nanozymes for the photocatalytic activation of Pt(IV) anticancer prodrugs. , 2020, Chemical communications.

[4]  A. J. Blake,et al.  Aza- and Mixed Thia/Aza-Macrocyclic Receptors with Quinoline-Bearing Pendant Arms for Optical Discrimination of Zinc(II) or Cadmium(II) Ions. , 2020, ChemPlusChem.

[5]  C. Philouze,et al.  Complexes of the Bis(di-tert -butyl-aniline)amine Pincer Ligand: The Case of Copper , 2020 .

[6]  Iacopo Benesperi,et al.  Copper Coordination Complexes for Energy-Relevant Applications , 2020, Energies.

[7]  A. Al‐Sehemi,et al.  Polymorphs of a copper coordination compound: interlinking active sites enhance the electrocatalytic activity of the coordination polymer compared to the coordination complex , 2020 .

[8]  V. Bertolasi,et al.  Tridentate Schiff base and 4,4′‐bipyridine coordinated di/polynuclear Cu (II) complexes: Synthesis, crystal structure, DNA/protein binding and catecholase activity , 2020 .

[9]  Yuanxin Wu,et al.  Cu(ii)-TACN complexes selectively induce antitumor activity in HepG-2 cells via DNA damage and mitochondrial-ROS-mediated apoptosis. , 2019, Dalton transactions.

[10]  Kathryn E. Toghill,et al.  Metal coordination complexes in nonaqueous redox flow batteries , 2019 .

[11]  H. Puschmann,et al.  Synthesis, structure, DNA/protein binding, molecular docking and in vitro anticancer activity of two Schiff base coordinated copper(II) complexes , 2019, Polyhedron.

[12]  M. Murali,et al.  Functional models for type-2 and type-3 copper oxidases: Self-assembled molecular association in [Cu(L)(Hdpa)](ClO4) determines the catalytic activity , 2019, Inorganica Chimica Acta.

[13]  Xin He,et al.  Triphenylene-Bridged Trinuclear Complexes of Cu: Models for Spin Interactions in Two-Dimensional Electrically Conductive MOFs. , 2019, Journal of the American Chemical Society.

[14]  O. Yaghi,et al.  Carbon capture and conversion using metal-organic frameworks and MOF-based materials. , 2019, Chemical Society reviews.

[15]  J. F. Stoddart,et al.  The Burgeoning of Mechanically Interlocked Molecules in Chemistry , 2019, Trends in Chemistry.

[16]  Chen-Yen Tsai,et al.  Mono- and dinuclear copper complexes coordinated on NNO-tridentate Schiff-base derivatives for copolymerization of cyclohexene oxide and cyclic anhydrides. , 2019, Dalton transactions.

[17]  Xiaodong Shi,et al.  Terpyridine-metal complexes: Applications in catalysis and supramolecular chemistry. , 2019, Coordination chemistry reviews.

[18]  Yu-hua Fan,et al.  Electrocatalytic water oxidation studies of a tetranuclear Cu(ii) complex with cubane-like core Cu4(μ3-O)4 , 2019, New Journal of Chemistry.

[19]  F. Schaper,et al.  Tetradentate iminophenolate copper complexes in rac-lactide polymerization , 2019, Canadian Journal of Chemistry.

[20]  G. Gasser,et al.  Harnessing the Coordination Chemistry of 1,4,7-Triazacyclononane for Biomimicry and Radiopharmaceutical Applications. , 2018, ChemPlusChem.

[21]  Shi-ping Yan,et al.  Dicyanamide Bridged Cu(II)36-Metallacrown-6 Complex with 1,4,7-Triisopropyl-1,4,7-Triazacyclononane and Binding Properties with DNA , 2018, Molecules.

[22]  S. Jana,et al.  Role of steric crowding of ligands in the formation of hydroxido bridged di- and trinuclear copper(II) complexes: Structures and magnetic properties , 2018 .

[23]  M. Sironi,et al.  Experimental and theoretical investigations on magneto-structural correlation in trinuclear copper(II) hydroxido propellers , 2018 .

[24]  A. Vasiliev,et al.  Milestones of low-D quantum magnetism , 2018 .

[25]  Xiaofeng Zhang,et al.  Experimental and mechanistic insights into copper(ii)-dioxygen catalyzed oxidative N-dealkylation of N-(2-pyridylmethyl)phenylamine and its derivatives. , 2017, Organic & biomolecular chemistry.

[26]  L. Wojtas,et al.  Copper(II) Complexes with Tridentate Bis(pyrazolylmethyl)pyridine Ligands: Synthesis, X‐ray Crystal Structures and ϵ‐Caprolactone Polymerization , 2017 .

[27]  P. Brandão,et al.  Diethylenetriamine/diamines/copper (II) complexes [Cu(dien)(NN)]Br2: Synthesis, solvatochromism, thermal, electrochemistry, single crystal, Hirshfeld surface analysis and antibacterial activity , 2017 .

[28]  P. Nelson,et al.  Review: Pincer ligands—Tunable, versatile and applicable , 2017 .

[29]  J. Rawson,et al.  Synthesis, characterization and magnetic studies on mono-, di-, and tri-nuclear Cu(ii) complexes of a new versatile diazine ligand. , 2017, Dalton transactions.

[30]  M. Nguyen,et al.  Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases , 2017 .

[31]  A. Willis,et al.  Alkyl chain length effect on construction of copper(II) complexes with tridentate Schiff base ligand and DNA interaction , 2016 .

[32]  J. Bacsa,et al.  Synthesis and Catalytic Reactivity of a Dicopper(II) μ-η(2):η(2)-Peroxo Species Supported by 1,4,7-Tri-tert-butyl-1,4,7-triazacyclononane. , 2016, Inorganic chemistry.

[33]  R. Fischer,et al.  Structural characterization of μ1,2- and μ1,3-bridged-squarato 1D metal(II) coordination polymers , 2015 .

[34]  O. Ozerov,et al.  Cyclometallation of the NNN pincer ligand in complexes of platinum , 2015 .

[35]  Louise N. Dawe,et al.  Magnetic properties of transition metal (Mn(II), Mn(III), Ni(II), Cu(II)) and lanthanide (Gd(III), Dy(III), Tb(III), Eu(III), Ho(III), Yb(III)) clusters and [nxn] grids: Isotropic exchange and SMM behaviour , 2015 .

[36]  M. Alkan,et al.  Nitrito complexes of nickel(II), copper(II) and cobalt(II) with tridentate pyrazole based planer ligand: Structure, spectroscopy, thermal properties and imitative nuclease activity , 2015 .

[37]  A. Riyasdeen,et al.  Mixed ligand copper(II) complexes of 2,9-dimethyl-1,10-phenanthroline: tridentate 3N primary ligands determine DNA binding and cleavage and cytotoxicity. , 2014, Journal of inorganic biochemistry.

[38]  Jonathan A. Kitchen,et al.  The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. , 2014, Chemical Society reviews.

[39]  V. Gandin,et al.  Advances in copper complexes as anticancer agents. , 2014, Chemical reviews.

[40]  A. Gallo,et al.  Synthesis, structure and magnetic investigations of polycarboxylato-copper(II) complexes , 2013 .

[41]  H. Kara,et al.  Synthesis, structural analysis and magnetic properties of two novel doubly oxygen bridged binuclear manganese(III) and copper(II) complexes with ONO tridentate ligands , 2013 .

[42]  F. Hahn,et al.  Copper(II) complexes of aliphatic tridentate amine/dithioether ligands – Synthesis and molecular structures , 2012 .

[43]  Roberta Pievo,et al.  Copper(II) compounds with NNO tridentate Schiff base ligands: Effect of subtle variations in ligands on complex formation, structures and magnetic properties , 2012 .

[44]  M. Das,et al.  Synthesis and characterisation of two double EE azido and thiocyanato bridged dimeric Cu(II) complexes with tridentate Schiff bases as blocking ligands , 2012 .

[45]  S. Javed,et al.  First structural example of a metal uncoordinated mesoionic imidazo[1,5-a]pyridine and its precursor intermediate copper complex: an insight to the catalytic cycle. , 2011, Dalton transactions.

[46]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[47]  A. Patra,et al.  Cu(II) complexes with square pyramidal (N2S)CuCl2 chromophore: Jahn–Teller distortion and subsequent effect on spectral and structural properties , 2011 .

[48]  P. Mukherjee,et al.  Synthesis, structures, and magnetic behavior of a series of copper(II) azide polymers of Cu4 building clusters and isolation of a new hemiaminal ether as the metal complex. , 2011, Inorganic chemistry.

[49]  B. Lewandowski,et al.  Amino-acid templated assembly of sucrose-derived macrocycles. , 2010, Organic letters.

[50]  Kathryn L Haas,et al.  Application of metal coordination chemistry to explore and manipulate cell biology. , 2009, Chemical reviews.

[51]  Louise N. Dawe,et al.  Polytopic ligand directed self-assembly-polymetallic [n x n] grids versus non-grid oligomers. , 2009, Chemical Society reviews.

[52]  L. Lindoy,et al.  Interaction of an extended series of N-substituted di(2-picolyl)amine derivatives with copper(II). Synthetic, structural, magnetic and solution studies. , 2009, Dalton transactions.

[53]  A. Terzis,et al.  Interpretation of the magnetic properties of a compound consisting of cocrystallized Cu(II)(3) and Cu(II)(4) clusters through the targeted synthesis and study of its discrete Cu(II)(4) component. , 2009, Inorganic chemistry.

[54]  Wei Huang,et al.  Anionic effects on the formation of tridentate 4′-chloro-2,2′:6′,2″-terpyridine copper(II) complexes having 1:1 or 1:2 ratio of metal and ligand and their crystal symmetry , 2009 .

[55]  F. Mautner,et al.  Structural characterization of some oxalato-bridged copper(II) and nickel(II) complexes , 2009 .

[56]  Guo‐Ping Yang,et al.  Two new isomeric complexes containing a well-resolved 1D water morph and (6, 3)-connected framework through hydrogen bonding interactions , 2009 .

[57]  S. Brooker,et al.  Monomeric, dimeric and 1D chain polymeric copper(ii) complexes of a pyrrole-containing tridentate Schiff-base ligand and its 4-brominated analogue. , 2008, Dalton transactions.

[58]  Guofang Zhang,et al.  Synthesis, structural characterization and catalytic activities of dicopper(II) complexes derived from tridentate pyrazole‐based N2O ligands , 2007 .

[59]  S. Yano,et al.  Asymmetric sulfur atom coordination in a copper(II) dipicolylamine (DPA) complex with a thioglycoside ligand. , 2007, Dalton transactions.

[60]  P. Cheng,et al.  Syntheses, Structures, and Characterization of a Series of Novel Zinc(II) and Cadmium(II) Compounds Based on 2,6-Di-(1,2,4-triazole-4-yl)pyridine , 2007 .

[61]  Anne Pichon,et al.  Solvent-free synthesis of metal complexes. , 2007, Chemical Society reviews.

[62]  A. Bond,et al.  Isomerism in copper(II) chloride complexes of bis(2-pyridylmethyl)amine and N-substituted derivatives: Synthesis and X-ray structural characterisation , 2007 .

[63]  D. S. Pandey,et al.  Nickel and copper complexes based on tridentate nitrogen donor ligand 2,6-bis-(1-phenyliminoethyl) pyridine: Synthesis, spectral and structural characterization , 2007 .

[64]  J. Steed,et al.  Templated crystal nucleation: mixed crystals of very different copper(II) N,N',N''-trimethyltriazacyclononane complexes. , 2007, Chemical communications.

[65]  E. Constable,et al.  2,2':6',2''-terpyridines: from chemical obscurity to common supramolecular motifs. , 2007, Chemical Society reviews.

[66]  J. Marek,et al.  Copper(II) complexes of tridentate selenobisphenolate ligand in mixed ligand environments: Synthesis, crystal structure, EPR and electrochemical studies , 2007 .

[67]  L. Spiccia,et al.  Oxalato‐Bridged Dinuclear Copper(II) Complexes of N‐Alkylated Derivatives of 1,4,7‐Triazacyclononane: Synthesis, X‐ray Crystal Structures and Magnetic Properties , 2006 .

[68]  L. Spiccia,et al.  Synthesis, X-ray crystal structures, magnetism, and phosphate ester cleavage properties of copper(II) complexes of N-substituted derivatives of 1,4,7-triazacyclononane. , 2006, Inorganic chemistry.

[69]  T. Glass,et al.  Shape-selective fluorescent sensing ensemble using a tweezer-type metalloreceptor. , 2006, Organic letters.

[70]  C. Belle,et al.  Sulfur ligation in copper enzymes and models. , 2005, Journal of inorganic biochemistry.

[71]  X. You,et al.  Structures and magnetic properties of dicopper(II) and dinickel(II) complexes with end-on azido bridges , 2005 .

[72]  William S. Striejewske,et al.  Copper Complexes with N-Alkylated NS2-Macrocyclic Ligands: Synthesis, Characterization, and Capabilities as Aziridination Precatalysts , 2004 .

[73]  Bin Zhao,et al.  Ferromagnetic and Antiferromagnetic Polymeric Complexes with the Macrocyclic Ligand 1,4,7‐Triazacyclononane , 2004 .

[74]  L. Spiccia,et al.  Macrocyclic copper(II) and zinc(II) complexes incorporating phosphate esters. , 2003, Inorganic chemistry.

[75]  P. Steel,et al.  8-(2-Pyridylmethoxy)quinoline: a new N,O,N′-tridentate ligand and X-ray crystal structures of its mononuclear palladium(II), copper(II) and nickel(II) complexes , 2003 .

[76]  G. Süss-Fink,et al.  Copper(II) azido complexes containing trinitrogen ligands: [Cu(η3-L)(N3)]2[Cu2Cl2(N3)4] [L=2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine], a tridimensional network of cationic and anionic copper complexes , 2003 .

[77]  T. Ren,et al.  Preparation and structural studies of (TACN)Cu(NO3)2 and [Cu(TACN)2](PF6)2 , 2003 .

[78]  R. Winpenny Serendipitous assembly of polynuclear cage compounds , 2002 .

[79]  C. Wynn,et al.  Two-dimensional S=1/2 Heisenberg antiferromagnets: Synthesis, structure, and magnetic properties , 2001, cond-mat/0107483.

[80]  S. Hatakeyama,et al.  Structure-dependent spectral behavior of five-coordinate ternary copper(II) complexes containing 2,2′-dipicolylamine. X-ray crystal structures of [Cu(dpa)(pic)]ClO4, and [Cu(dpa)(pic)]PF6·H2O (dpa=2,2′dipicolylamine, pic=picolinate) , 2000 .

[81]  Rovira Molecular spin ladders , 2000, Chemistry.

[82]  John A. Raven,et al.  The role of trace metals in photosynthetic electron transport in O2-evolving organisms , 1999, Photosynthesis Research.

[83]  J. Burstyn,et al.  Mechanistic Studies of Dichloro(1,4,7-triazacyclononane)copper(II)-Catalyzed Phosphate Diester Hydrolysis† , 1996 .

[84]  K. Wieghardt,et al.  Intramolecular Long-Range Exchange Coupling in Dinuclear Copper(II) Complexes with Cu…Cu Separations Greater than 10Å , 1995 .

[85]  E. Bill,et al.  An imidazolate-bridged tetranuclear copper(II) complex: synthesis, magnetic and EPR studies, and crystal structure of [L4Cu4(Im)4](ClO4)4.2H2O (L = 1,4,7-triazacyclononane, Im = imidazolate anion) , 1993 .

[86]  W. Setzer,et al.  1,4,7-Trithiacyclononane, a novel tridentate thioether ligand, and the structure of its nickel(II), cobalt(II), and copper(II) complexes , 1983 .

[87]  D. Hodgson,et al.  Relation between the singlet-triplet splitting and the copper-oxygen-copper bridge angle in hydroxo-bridged copper dimers , 1976 .

[88]  A. Rompel,et al.  Type-3 copper proteins: recent advances on polyphenol oxidases. , 2014, Advances in protein chemistry and structural biology.

[89]  V. Mahadevan,et al.  Syntheses, characterization, and reactivity of copper complexes with tridentate N-donor ligands , 2008 .

[90]  K. Wieghardt,et al.  Preparation, Magnetism, and Crystal Structures of the Tautomers [LCu(μ2-OH)2CuL](ClO4)2 (Blue) and [LCu(μ2-OH2)(μ2-O)CuL](ClOμ4)μ2 (Green): μ-Aqua-μ-oxo vs. Di-μ-hydroxo Linkage , 1985 .