18 Unconventional Essays on the Nature of Mathematics

Introduction by Reuben Hersh.- A. Renyi: Socratic Dialogue.- C. Celluci: Filosofia e Matematica, introduction.- W. Thurston: On Proof and Progress in Mathematics.- A. Aberdein: The Informal Logic of Mathematical Proof.- Y. Rav: Philosophical Problems of Mathematics in Light of Evolutionary Epistemology.- B. Rotman: Towards a Semiotics of Mathematics.- D. Mackenzie: Computers and the Sociology of Mathematical Proof.- T. Stanway: From G.H.H. and Littlewood to XML and Maple: Changing Needs and Expectations in Mathematical Knowledge Management.- R. Nunez: Do Numbers Really Move?- T. Gowers: Does Mathematics Need a Philosophy?- J. Azzouni: How and Why Mathematics is a Social Practice.- G.C. Rota: The Pernicious Influence of Mathematics Upon Philosophy.- J. Schwartz: The Pernicious Influence of Mathematics on Science.- Alfonso Avila del Palacio: What is Philosophy of Mathematics Looking For?.- A. Pickering: Concepts and the Mangle of Practice: Constructing Quaternions.- E. Glas: Mathematics as Objective Knowledge and as Human Practice.- L. White: The Locus of Mathematical Reality: An Anthropological Footnote.- R. Hersh: Inner Vision, Outer Truth.