A Modified PRP-CG Type Derivative-Free Algorithm with Optimal Choices for Solving Large-Scale Nonlinear Symmetric Equations

Inspired by the large number of applications for symmetric nonlinear equations, this article will suggest two optimal choices for the modified Polak–Ribiere–Polyak (PRP) conjugate gradient (CG) method by minimizing the measure function of the search direction matrix and combining the proposed direction with the default Newton direction. In addition, the corresponding PRP parameters are incorporated with the Li and Fukushima approximate gradient to propose two robust CG-type algorithms for finding solutions for large-scale systems of symmetric nonlinear equations. We have also demonstrated the global convergence of the suggested algorithms using some classical assumptions. Finally, we demonstrated the numerical advantages of the proposed algorithms compared to some of the existing methods for nonlinear symmetric equations.

[1]  Weijun Zhou,et al.  A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems , 2020, J. Comput. Appl. Math..

[2]  Reza Ghanbari,et al.  A descent extension of the Polak-Ribière-Polyak conjugate gradient method , 2014, Comput. Math. Appl..

[3]  Mohammed Yusuf Waziri,et al.  A Derivative-Free Conjugate Gradient Method and Its Global Convergence for Solving Symmetric Nonlinear Equations , 2015, Int. J. Math. Math. Sci..

[4]  J. Nocedal,et al.  A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .

[5]  Neculai Andrei,et al.  A double parameter scaled BFGS method for unconstrained optimization , 2018, J. Comput. Appl. Math..

[6]  Xiwen Lu,et al.  BFGS trust-region method for symmetric nonlinear equations , 2009 .

[7]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[8]  Weijun Zhou,et al.  Convergence Properties of an Iterative Method for Solving Symmetric Non-linear Equations , 2015, J. Optim. Theory Appl..

[9]  J. K. Liu,et al.  A norm descent derivative-free algorithm for solving large-scale nonlinear symmetric equations , 2018, J. Comput. Appl. Math..

[10]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[11]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[12]  M. K. Dauda,et al.  Derivative Free Conjugate Gradient Method via Broyden’s Update for solving symmetric systems of nonlinear equations , 2019, Journal of Physics: Conference Series.

[13]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[14]  Dong-Hui Li,et al.  Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations , 2002, SIAM J. Numer. Anal..

[15]  Poom Kumam,et al.  An inexact conjugate gradient method for symmetric nonlinear equations , 2019, Comput. Math. Methods.

[16]  José Mario Martínez,et al.  Spectral residual method without gradient information for solving large-scale nonlinear systems of equations , 2006, Math. Comput..

[17]  Xiwen Lu,et al.  A new backtracking inexact BFGS method for symmetric nonlinear equations , 2008, Comput. Math. Appl..

[18]  Dong-Hui Li,et al.  A modified Fletcher-Reeves-Type derivative-free method for symmetric nonlinearequations , 2011 .

[19]  Avinoam Perry,et al.  Technical Note - A Modified Conjugate Gradient Algorithm , 1978, Oper. Res..

[21]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[23]  Weijun Zhou,et al.  A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .

[24]  L. Liao,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[25]  Weijun Zhou,et al.  An Inexact PRP Conjugate Gradient Method for Symmetric Nonlinear Equations , 2014 .

[26]  Hybrid conjugate gradient parameter for solving symmetric systems of nonlinear equations , 2019, Indonesian Journal of Electrical Engineering and Computer Science.