Stellar Properties for a Comprehensive Collection of Star-forming Regions in the SDSS APOGEE-2 Survey

The Sloan Digital Sky Survey IV APOGEE-2 primary science goal was to observe red giant stars throughout the Galaxy to study its dynamics, morphology, and chemical evolution. The APOGEE instrument, a high-resolution 300-fiber H-band (1.55–1.71 μm) spectrograph, is also ideal to study other stellar populations in the Galaxy, among which are a number of star-forming regions and young open clusters. We present the results of the determination of six stellar properties (T eff, logg , [Fe/H], L/L ⊙, M/M ⊙, and age) for a sample that is composed of 3360 young stars, of subsolar to supersolar types, in 16 Galactic star formation and young open cluster regions. Those sources were selected by using a clustering method that removes most of the field contamination. Samples were also refined by removing targets affected by various systematic effects of the parameter determination. The final samples are presented in a comprehensive catalog that includes all six estimated parameters. This overview study also includes parameter spatial distribution maps for all regions and Hertzsprung–Russell ( logL/L⊙ vs. T eff) diagrams. This study serves as a guide for detailed studies on individual regions and paves the way for the future studies on the global properties of stars in the pre-main-sequence phase of stellar evolution using more robust samples.

[1]  R. Beaton,et al.  APOGEE Net: An Expanded Spectral Model of Both Low-mass and High-mass Stars , 2022, The Astronomical Journal.

[2]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .

[3]  R. Yan,et al.  CoSHA: Code for Stellar Properties Heuristic Assignment—for the MaStar Stellar Library , 2021, The Astrophysical Journal Supplement Series.

[4]  F. D. Albareti,et al.  Final Targeting Strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey , 2021, The Astronomical Journal.

[5]  Santiago,et al.  Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey , 2021, The Astronomical Journal.

[6]  G. Carraro,et al.  The Gaia-ESO Survey: A new approach to chemically characterising young open clusters II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce , 2021, 2107.12381.

[7]  A. Korn,et al.  The Gaia-ESO survey: a lithium depletion boundary age for NGC 2232 , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  K. Covey,et al.  The G 305 Star-forming Region. II. Irregular Variable Stars , 2021, The Astrophysical Journal.

[9]  M. Hayden,et al.  The GALAH survey: Chemical homogeneity of the Orion complex , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  Heidelberg,et al.  Estimating distances from parallaxes. V: Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. , 2020, 2012.05220.

[11]  S. Reffert,et al.  Improving the open cluster census , 2020, 2012.04267.

[12]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: A new diagnostic for accretion and outflow activity in the young cluster NGC 2264 , 2020, Astronomy & Astrophysics.

[13]  K. Luhman A Gaia Survey for Young Stars Associated with the Lupus Clouds , 2020, The Astronomical Journal.

[14]  H. Richer,et al.  Intermediate-mass Stars Become Magnetic White Dwarfs , 2020, The Astrophysical Journal.

[15]  C. M. Bidin,et al.  Stellar activity with LAMOST. III. Temporal variability pattern in Pleiades, Praesepe, and Hyades , 2020, 2005.14665.

[16]  D. A. García-Hernández,et al.  Spectral Classification of B Stars: The Empirical Sequence Using SDSS-IV/APOGEE Near-IR Data , 2020, The Astrophysical Journal.

[17]  A. Roman-Lopes,et al.  Massive Stars in the SDSS-IV-APOGEE Survey: Wolf–Rayet Stars of the WN Type , 2020, The Astrophysical Journal.

[18]  A. Roman-Lopes,et al.  Massive Stars in the SDSS-IV/APOGEE2 Survey. III. New OB Stars in the Direction of the Sagittarius Spiral Arm , 2020, The Astrophysical Journal Supplement Series.

[19]  Matthew T. Scoggins,et al.  APOGEE Net: Improving the Derived Spectral Parameters for Young Stars through Deep Learning , 2020, The Astronomical Journal.

[20]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a new approach to chemically characterising young open clusters , 2020, Astronomy & Astrophysics.

[21]  D. A. García-Hernández,et al.  The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra , 2019, The Astrophysical Journal Supplement Series.

[22]  K. Covey,et al.  Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry , 2019, Astronomy & Astrophysics.

[23]  A. Weiss,et al.  Dense cores and star formation in the giant molecular cloud Vela C , 2019, Astronomy & Astrophysics.

[24]  K. Covey,et al.  The G305 Star-forming Region. I. Newly Classified Hot Stars , 2019, The Astronomical Journal.

[25]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: asymmetric expansion of the Lagoon Nebula cluster NGC 6530 from GES and Gaia DR2 , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  A. K. Vivas,et al.  The CIDA Variability Survey of Orion OB1. II. Demographics of the Young, Low-mass Stellar Populations , 2018, The Astronomical Journal.

[27]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[28]  Yuan-Sen Ting,et al.  The Payne: Self-consistent ab initio Fitting of Stellar Spectra , 2018, The Astrophysical Journal.

[29]  J. P. Colque,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs , 2019 .

[30]  K. Covey,et al.  IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud , 2018, The Astrophysical Journal.

[31]  K. Luhman,et al.  A WISE Survey of Circumstellar Disks in the Upper Scorpius Association , 2018, The Astronomical Journal.

[32]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure , 2018, The Astronomical Journal.

[33]  A. Dotter,et al.  Age Determinations of the Hyades, Praesepe, and Pleiades via MESA Models with Rotation , 2018, The Astrophysical Journal.

[34]  E. Feigelson,et al.  The APOGEE-2 Survey of the Orion Star-forming Complex. I. Target Selection and Validation with Early Observations , 2018, 1804.06484.

[35]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[36]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: a kinematical and dynamical study of four young open clusters , 2018, Astronomy & Astrophysics.

[37]  K. Covey,et al.  Massive Stars in the SDSS-IV/APOGEE SURVEY. I. OB Stars , 2018, 1802.01724.

[38]  Y. B. Kumar,et al.  Stellar activity with LAMOST – II. Chromospheric activity in open clusters , 2018, 1801.07410.

[39]  A. Stutz Slingshot mechanism for clusters: Gas density regulates star density in the Orion Nebula Cluster (M42) , 2017, 1705.05838.

[40]  D. A. García-Hernández,et al.  Target Selection for the SDSS-IV APOGEE-2 Survey , 2017, 1708.00155.

[41]  Jonathan C. Tan,et al.  IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields , 2017, 1706.01161.

[42]  J. Walsh,et al.  A Tale of Three Cities: OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster , 2017, 1705.09496.

[43]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[44]  Jonathan C. Tan,et al.  IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud , 2017, 1702.04113.

[45]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[46]  Y. B. Kumar,et al.  Stellar activity with LAMOST – I. Spot configuration in Pleiades , 2016, 1608.05452.

[47]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[48]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[49]  Andrew Gould,et al.  Slingshot Mechanism in Orion: Kinematic Evidence For Ejection of Protostars by Filaments , 2015, 1512.04944.

[50]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[51]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[52]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[53]  V. Adibekyan,et al.  The Gaia-ESO survey: metallicity of the chamaeleon i star-forming region , 2014, 1406.2548.

[54]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[55]  N. Schneider,et al.  Young stellar clusters in the Rosette molecular cloud Arguments against triggered star formation , 2013, 1307.4756.

[56]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[57]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[58]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[59]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[60]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[61]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[62]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[63]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[64]  S. Percival,et al.  The distance to the Pleiades: Main sequence fitting in the near infrared , 2004, astro-ph/0409362.

[65]  L. Allen,et al.  A Catalog of Young Stellar Groups and Clusters within 1 Kiloparsec of the Sun , 2003, astro-ph/0307510.

[66]  Brazil.,et al.  A Catalogue of infrared star clusters and stellar groups , 2002, astro-ph/0210302.

[67]  V. Avedisova A catalog of star-forming regions in the galaxy , 2002 .

[68]  R. Mathieu,et al.  A Photometric Study of the Young Stellar Population throughout the λ Orionis Star-forming Region , 2001, astro-ph/0110160.

[69]  R. Mathieu,et al.  The Spatial Distribution of the λ Orionis Pre-Main-Sequence Population , 2001 .

[70]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[71]  G. Basri,et al.  The Mass and Age of Very Low Mass Members of the Open Cluster α Persei , 1998, astro-ph/9807145.

[72]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[73]  G. Anderson,et al.  Error propagation by the Monte Carlo method in geochemical calculations , 1976 .