Phosphorus-doped silicon copper alloy composites as high-performance anode materials for lithium-ion batteries

[1]  Yanhong Tian,et al.  Carbon Microstructure Dependent Li-Ion Storage Behaviors in SiOx /C Anodes. , 2023, Small.

[2]  Qiaobao Zhang,et al.  Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes , 2023, Energy Storage Materials.

[3]  Ke Xu,et al.  In-situ synthesis of Si@G@TiC double protective layer structure for enhancing cycling stability of lithium-ion batteries , 2023, Sustainable Materials and Technologies.

[4]  C. Wen,et al.  Enhanced Electrochemical Performance of Silicon Anode Materials with Titanium Hydride Treatment , 2023, SSRN Electronic Journal.

[5]  W. Pan,et al.  Vanadium-Tailored Silicon Composite with Furthered Ion Diffusion Behaviors for Longevity Lithium-Ion Storage. , 2023, ACS applied materials & interfaces.

[6]  Y. Liu,et al.  Photo-Initiated in Situ Synthesis of Polypyrrole Fe-Coated Porous Silicon Microspheres for High-performance Lithium-ion Battery Anodes , 2023, Chemical Engineering Journal.

[7]  C. Thompson,et al.  Mechanical stress and morphology evolution in RuO2 thin film electrodes during lithiation and delithiation , 2022, Journal of Power Sources.

[8]  Xinyi Dai,et al.  S-doped crosslinked porous Si/SiO2 anode materials with excellent lithium storage performance synthesized via disproportionation , 2022, Ceramics International.

[9]  Liangbing Hu,et al.  A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries , 2022, Matter.

[10]  Jianping Yang,et al.  Assembly: A Key Enabler for the Construction of Superior Silicon‐Based Anodes , 2022, Advanced science.

[11]  Shiyou Li,et al.  Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries , 2022, Ionics.

[12]  Haolin Tang,et al.  Si-P-Ti stabilized Si-P/Ti3C2Tx nanohybrids for enhanced lithium-ion storage , 2022, Advanced Composites and Hybrid Materials.

[13]  Liyi Shi,et al.  High‐Performance Microsized Si Anodes for Lithium‐Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism , 2022, Advanced materials.

[14]  Jun Wu,et al.  Recent Progress and Future Perspective on Practical Silicon Anode-Based Lithium Ion Batteries , 2022, Energy Storage Materials.

[15]  Tingting Jiang,et al.  Phosphorus-doped silicon nanoparticles as high performance LIB negative electrode , 2022, Journal of Materials Science.

[16]  Yinglong Chen,et al.  Novel Si@C/P anode materials with improved cyclability and rate capacity for lithium-ion batteries , 2021, Journal of Alloys and Compounds.

[17]  W. Lei,et al.  Research Progress on Coating Structure of Silicon Anode Materials for Lithium-ion Battery. , 2021, ChemSusChem.

[18]  T. Feng,et al.  Nitrogen-plasma doping of carbon film for a high-quality layered Si/C composite anode. , 2021, Journal of colloid and interface science.

[19]  Yuegang Zhang,et al.  Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes , 2021 .

[20]  Jianping Yang,et al.  Boron heteroatom-doped silicon–carbon peanut-like composites enables long life lithium-ion batteries , 2021, Rare Metals.

[21]  Han Yang,et al.  Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode , 2021 .

[22]  Yao Zhang,et al.  Si@Cu3Si nano-composite prepared by facile method as high-performance anode for lithium-ion batteries , 2021 .

[23]  C. Thompson,et al.  Mechanisms of the cyclic (de)lithiation of RuO2 , 2020, Journal of Materials Chemistry A.

[24]  S. Dou,et al.  Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture , 2020, National science review.

[25]  H. Wu,et al.  Embedding Silicon in Pinecone‐Derived Porous Carbon as a High‐Performance Anode for Lithium‐Ion Batteries , 2020 .

[26]  Zengsheng Ma,et al.  Effect of Phosphorus Doping on Conductivity, Diffusion, and High Rate Capability in Silicon Anode for Lithium-Ion Batteries , 2020 .

[27]  Zhichuan J. Xu,et al.  Enhancing the Charge Transportation Ability of Yolk-Shell Structure for High-Rate Sodium and Potassium Storage. , 2020, ACS nano.

[28]  M. Al-Mamun,et al.  A Yolk-Shell Structured Silicon Anode with Superior Conductivity and High Tap Density for Full Lithium-Ion Batteries. , 2019, Angewandte Chemie.

[29]  Qiaobao Zhang,et al.  Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries. , 2018, Nanoscale.

[30]  Jow-Lay Huang,et al.  Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery , 2018, Scientific Reports.

[31]  Xibin Yu,et al.  Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability , 2018 .

[32]  Deyu Wang,et al.  Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[33]  Liqiang Mai,et al.  Track batteries degrading in real time , 2017, Nature.

[34]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[35]  A. Manthiram,et al.  Low-cost carbon-coated Si-Cu 3 Si-Al 2 O 3 nanocomposite anodes for high-performance lithium-ion batteries , 2016 .

[36]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[37]  Y. Domi,et al.  Effect of Phosphorus-Doping on Electrochemical Performance of Silicon Negative Electrodes in Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[38]  Jie Zhou,et al.  Cu3Si@Si core-shell nanoparticles synthesized using a solid-state reaction and their performance as anode materials for lithium ion batteries. , 2015, Nanoscale.

[39]  Yusheng Yang,et al.  Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material , 2015 .

[40]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[41]  Joong-Kee Lee,et al.  Electrochemical characteristics of phosphorus doped silicon for the anode material of lithium secondary batteries , 2012 .

[42]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[43]  Jun Chen,et al.  Lithium transport at silicon thin film: barrier for high-rate capability anode. , 2010, The Journal of chemical physics.

[44]  Huakun Liu,et al.  Synthesis and Electrochemical Studies on Li2CuSnO4 and Li2CuSnSiO6 as Negative Electrode in the Lithium Batteries , 2010 .

[45]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[46]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[47]  B. Dunn,et al.  Templated nanocrystal-based porous TiO(2) films for next-generation electrochemical capacitors. , 2009, Journal of the American Chemical Society.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  P. Ostoja,et al.  Lattice parameter study of silicon uniformly doped with boron and phosphorus , 1974 .

[50]  Y. Beyene,et al.  Nano structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives , 2022, Sustainable Energy & Fuels.

[51]  M. Rümmeli,et al.  A review of recent developments in Si/C composite materials for Li-ion batteries , 2021 .

[52]  Zhang Changhua,et al.  The electronic structure and optical properties of P-doped silicon nanotubes , 2014 .

[53]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.