Magnetic field strength controlled liquid phase syntheses of ferromagnetic metal nanowire

The effect of the external magnetic field strength on the morphology of metal nickel (Ni) nanowires synthesized via electroless deposition is investigated. Under strong magnetic fields, Ni nanoparticles, precursors of Ni nanowires, easily align along the magnetic field to form straight nanowires with smooth surfaces. In contrast, under weak magnetic fields, branched Ni nanowires with rough surfaces are formed. By leveraging this magnetic effect on the morphology of Ni nanowires, simply changing the external magnetic field can synthesize various types of Ni nanowire nonwovens. Furthermore, different forms of Ni nanowires were grown on the sheet by the similar electroless deposition reaction on a non-magnetic copper metal sheet. The macroscopic morphology of this composite is closely correlated with the microstructures of Ni nanowires.

[1]  Tao Zhang,et al.  Template-assisted fabrication of Ni nanowire arrays for high efficient oxygen evolution reaction , 2019, Electrochimica Acta.

[2]  B. İmer,et al.  Core/shell copper nanowire networks for transparent thin film heaters , 2019, Nanotechnology.

[3]  Jianping Wang,et al.  Magnetic nanoparticles in nanomedicine: a review of recent advances , 2018, Nanotechnology.

[4]  E. Matsubara,et al.  Liquid-phase synthesis of Ni nanowire/cellulose hybrid structure , 2018 .

[5]  C. Monton,et al.  Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates , 2018, Nanotechnology.

[6]  F. Risso Agitation, Mixing, and Transfers Induced by Bubbles , 2018 .

[7]  M. Krajewski,et al.  Magnetic-field-induced synthesis of magnetic wire-like micro- and nanostructures. , 2017, Nanoscale.

[8]  Zhiwei Zhong,et al.  Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications , 2017 .

[9]  Jianjun Zhang,et al.  Optical properties of conductive silver-nanowire films with different nanowire lengths , 2017, Nano Research.

[10]  Dong Liu,et al.  Superior catalytic performances of platinum nanoparticles loaded nitrogen-doped graphene toward methanol oxidation and hydrogen evolution reaction. , 2017, Journal of colloid and interface science.

[11]  E. Matsubara,et al.  One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. , 2015, Journal of colloid and interface science.

[12]  Surya Prakash Singh,et al.  Conductive silver inks and their applications in printed and flexible electronics , 2015 .

[13]  Byeong Wan An,et al.  Stretchable and transparent electrodes based on in-plane structures. , 2015, Nanoscale.

[14]  G. Zou,et al.  Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications. , 2015, ACS applied materials & interfaces.

[15]  I. Saldan,et al.  Chemical synthesis and application of palladium nanoparticles , 2015, Journal of Materials Science.

[16]  D. Bellet,et al.  Metallic nanowire networks: effects of thermal annealing on electrical resistance. , 2014, Nanoscale.

[17]  E. Matsubara,et al.  Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. , 2014, Nano letters.

[18]  D. Bellet,et al.  Flexible transparent conductive materials based on silver nanowire networks: a review , 2013, Nanotechnology.

[19]  P. Charbonneau,et al.  The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. , 2012, Nanoscale.

[20]  E. Matsubara,et al.  Formation of Nickel Nanowires via Electroless Deposition Under a Magnetic Field , 2011 .

[21]  E. Matsubara,et al.  Electroless Deposition of Cobalt Nanowires in an Aqueous Solution under External Magnetic Field , 2011 .

[22]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[23]  E. Matsubara,et al.  Fabrication of Cobalt Nanowires by Electroless Deposition under External Magnetic Field , 2011 .

[24]  Ming Hu,et al.  How Does the Distribution of External Magnetic Lines of Force Influence the Growth of Ferromagnetic Material , 2010 .

[25]  Shouheng Sun,et al.  Cold welding of ultrathin gold nanowires. , 2010, Nature nanotechnology.

[26]  E. Matsubara,et al.  Oxidation-State Control of Nanoparticles Synthesized via Chemical Reduction Using Potential Diagrams , 2009 .

[27]  K. Sadaiyandi Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al , 2009 .

[28]  E. Matsubara,et al.  Formation of Cu Nanoparticles by Electroless Deposition Using Aqueous CuO Suspension , 2008 .

[29]  Laigui Yu,et al.  The Fabrication and Magnetic Properties of Ni Fibers Synthesized Under External Magnetic Fields , 2008 .

[30]  Jang Sub Kim,et al.  Direct writing of copper conductive patterns by ink-jet printing , 2007 .

[31]  Qianwang Chen,et al.  Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. , 2007, Chemical communications.

[32]  Wendelin J. Stark,et al.  Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment , 2007 .

[33]  Catherine J Murphy,et al.  Shape-dependent plasmon-resonant gold nanoparticles. , 2006, Small.

[34]  Hsien-Hsueh Lee,et al.  Inkjet printing of nanosized silver colloids , 2005, Nanotechnology.

[35]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[36]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[37]  A. Bell The Impact of Nanoscience on Heterogeneous Catalysis , 2003, Science.

[38]  X. Li,et al.  Synthesis and magnetic properties of Fe–Co–Ni nanoparticles by hydrogen plasma–metal reaction , 2000 .

[39]  S. Orchard,et al.  Current-potential relationships for the half-reactions in two electroless nickel plating baths using the quartz crystal microbalance electrode , 1992 .

[40]  D. Buttry,et al.  Electrochemical applications of the quartz crystal microbalance , 1989 .

[41]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[42]  M. Mizumaki,et al.  EQCM Analysis of Redox Behavior of CuFe Prussian Blue Analog in Mg Battery Electrolytes , 2015 .

[43]  Yong Peng,et al.  Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. , 2009, Nano letters.

[44]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[45]  Al,et al.  ize dependent Debye temperature and mean square displacements of anocrystalline Au , Ag and , 2022 .