Distinct clinical characteristics of C9orf72 expansion carriers compared with GRN, MAPT, and nonmutation carriers in a Flanders-Belgian FTLD cohort.

OBJECTIVE To characterize patients with frontotemporal lobar degeneration (FTLD) with a repeat expansion mutation in the gene C9orf72, and to determine whether there are differences in the clinical presentation compared with FTLD carriers of a mutation in GRN or MAPT or with patients with FTLD without mutation. DESIGN Patient series. SETTING Dementia clinics in Flanders, Belgium. PATIENTS Two hundred seventy-five genetically and phenotypically thoroughly characterized patients with FTLD. MAIN OUTCOME MEASURES Clinical and demographic characteristics of 26 C9orf72 expansion carriers compared with patients with a GRN or MAPT mutation, as well as patients with familial and sporadic FTLD without mutation. RESULTS C9orf72 expansion carriers developed FTLD at an early age (average, 55.3 years; range, 42-69 years), significantly earlier than in GRN mutation carriers or patients with FTLD without mutation. Mean survival (6.2 years; range, 1.5-17.0 years) was similar to other patient groups. Most developed behavioral variant frontotemporal dementia (85%), with disinhibited behavior as the prominent feature. Concomitant amyotrophic lateral sclerosis is a strong distinguishing feature for C9orf72 -associated FTLD. However, in most patients (73%), amyotrophic lateral sclerosis symptoms were absent. Compared with C9orf72 expansion carriers, nonfluent aphasia and limb apraxia were significantly more common in GRN mutation carriers. CONCLUSIONS C9orf72 -associated FTLD most often presents with early-onset behavioral variant frontotemporal dementia with disinhibition as the prominent feature, with or without amyotrophic lateral sclerosis. Based on the observed genotype-phenotype correlations between the different FTLD syndromes and different genetic causes, we propose a decision tree to guide clinical genetic testing in patients clinically diagnosed as having FTLD.

[1]  T. Ferman,et al.  Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72 , 2011, Acta Neuropathologica.

[2]  Andrew Kertesz,et al.  Relationship between Frontotemporal Dementia and Corticobasal Degeneration/Progressive Supranuclear Palsy , 2004, Dementia and Geriatric Cognitive Disorders.

[3]  J. Hardy,et al.  Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. , 2012, Brain : a journal of neurology.

[4]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[5]  C. van Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration–amyotrophic lateral sclerosis spectrum , 2012, Annals of medicine.

[6]  S. Engelborghs,et al.  Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His , 2009, Neurology.

[7]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[8]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[9]  Julie S Snowden,et al.  Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: comparison with patients with MAPT and no known mutations. , 2008, Brain : a journal of neurology.

[10]  M. Freedman,et al.  Frontotemporal lobar degeneration , 1998, Neurology.

[11]  David T. Jones,et al.  Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72 , 2012, Brain : a journal of neurology.

[12]  Patrick Santens,et al.  CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. , 2008, Human molecular genetics.

[13]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[14]  C. Broeckhoven,et al.  The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. , 2012 .

[15]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[16]  A. Eisen,et al.  Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p , 2012, Acta Neuropathologica.

[17]  T. Hortobágyi,et al.  p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS , 2011, Acta Neuropathologica.

[18]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[19]  Nick C Fox,et al.  Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. , 2011, Brain : a journal of neurology.

[20]  H. Feldman,et al.  Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. , 2012, Brain : a journal of neurology.

[21]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[22]  C. van Broeckhoven,et al.  A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. , 2006, Brain : a journal of neurology.

[23]  John Q. Trojanowski,et al.  Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update , 2009, Acta Neuropathologica.

[24]  M. Hallett,et al.  Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) , 1996, Neurology.

[25]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[26]  F. Marrosu,et al.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. , 2012, Brain : a journal of neurology.

[27]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[28]  H. Feldman,et al.  Clinical and pathological features of familial frontotemporal dementia caused by C 9 ORF 72 mutation on chromosome 9 p , 2012 .

[29]  M G Spillantini,et al.  Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. , 1999, Journal of neuropathology and experimental neurology.

[30]  Andrew King,et al.  A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. , 2008, Brain : a journal of neurology.

[31]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[32]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[33]  Irene Litvan,et al.  Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia , 2003, Annals of neurology.

[34]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[35]  D. Kareken,et al.  The tauopathy associated with mutation +3 in intron 10 of Tau: characterization of the MSTD family , 2007, Brain : a journal of neurology.