An overview of results on the existence or nonexistence and the error term of Gauss-Kronrod quadrature formulae

Kronrod in 1964, trying to estimate economically the error of the n-point Gauss-Legendre quadrature formula, developed a new formula by adding to the n Gauss nodes n + 1 new ones, which are determined, together with all weights, such that the new formula has maximum degree of exactness. It turns out that the new nodes are the zeros of a polynomial orthogonal with respect to a variable-sign weight function. This polynomial was considered for the first time by Stieltjes in 1894. Important for the new formula, now appropriately called the Gauss-Kronrod quadrature formula, are properties such as the interlacing of the Gauss nodes with the new nodes, the inclusion of all nodes in the interior of the interval of integration, and the positivity of all quadrature weights. We review, for classical and nonclassical weight functions, the existence or nonexistence and the error term of Gauss-Kronrod formulae having one or more of the aforementioned properties.

[1]  Walter Gautschi,et al.  On the computing Gauss-Kronrod Quadrature Formulae , 1986 .

[2]  Giovanni Monegato,et al.  Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights , 1978 .

[3]  A. Markoff Sur la méthode de Gauss pour le calcul approché des intégrales , 1885 .

[4]  Philip Rabinowitz,et al.  The exact degree of precision of generalized Gauss-Kronrod integration rules , 1980 .

[5]  Giovanni Monegato An overview of results and questions related to Kronrod schemes , 1979 .

[6]  É. Picard,et al.  Correspondance d'Hermite et de Stieltjes , 2022 .

[7]  Bruno Brosowski,et al.  Methoden und Verfahren der mathematischen Physik , 1975 .

[8]  Giovanni Monegato,et al.  Stieltjes Polynomials and Related Quadrature Rules , 1982 .

[9]  J. Geronimus,et al.  On a Set of Polynomials , 1930 .

[10]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[11]  Sotirios E. Notaris,et al.  An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions , 1988 .

[12]  Franz Peherstorfer,et al.  On Stieltjes polynomials and Gauss-Kronrod quadrature , 1990 .

[13]  Some new formulae for the Stieltjes polynomials relative to classical weight functions , 1991 .

[14]  Sotirios E. Notaris Gauss-Kronrod quadrature formulae for weight functions of Bernstein-Szego¨ type, II , 1990 .

[15]  Franz Peherstorfer,et al.  On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas , 1992 .

[16]  Sotirios E. Notaris Error bounds for Gauss-Kronrod quadrature formulae of analytic functions , 1993 .

[17]  Sven Ehrich Error bounds for Gauss-Kronrod quadrature formulae , 1994 .

[18]  Giovanni Monegato,et al.  Positivity of the weights of extended Gauss-Legendre quadrature rules , 1978 .

[19]  Giovanni Monegato,et al.  Some remarks on the construction of extended Gaussian quadrature rules , 1978 .

[20]  Franz Peherstorfer Weight functions admitting repeated positive Kronrod quadrature , 1990 .

[21]  G. Szegö,et al.  Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören , 1935 .

[22]  G. Monegato A note on extended Gaussian quadrature rules , 1976 .

[23]  P. Rabinowitz On the definiteness of Gauss-Kronrod integration rules , 1986 .

[24]  Philip Rabinowitz,et al.  Gauss-Kronrod integration rules for Cauchy principal value integrals , 1983 .

[25]  T. J. Rivlin,et al.  A family of Gauss-Kronrod quadrature formulae , 1988 .