Interface Engineering of Magnetic Anisotropy in van der Waals Ferromagnet-based Heterostructures.

Interface engineering is an effective approach to tune the magnetic properties of van der Waals (vdW) magnets and their heterostructures. The prerequisites for the practical utilization of vdW magnets and heterostructures are a quantitative analysis of their magnetic anisotropy and the ability to modulate their interfacial properties, which have been challenging to achieve with conventional methods. Here we characterize the magnetic anisotropy of Fe3GeTe2 layers by employing the magnetometric technique based on anomalous Hall measurements and confirm its intrinsic nature. In addition, on the basis of the thickness dependences of the anisotropy field, we identify the interfacial and bulk contributions. Furthermore, we demonstrate that the interfacial anisotropy in Fe3GeTe2-based heterostructures is locally controlled by adjacent layers, leading to the realization of multiple magnetic behaviors in a single channel. This work proposes that the magnetometric technique is a useful platform for investigating the intrinsic properties of vdW magnets and that functional devices can be realized by local interface engineering.

[1]  J. Hone,et al.  Low-Resistance p-Type Ohmic Contacts to Ultrathin WSe2 by Using a Monolayer Dopant , 2021, ACS Applied Electronic Materials.

[2]  C. Jang,et al.  Exchange Bias in Weakly Interlayer-Coupled van der Waals Magnet Fe3GeTe2. , 2021, Nano letters.

[3]  Hyun-Woo Lee,et al.  Gigantic Current Control of Coercive Field and Magnetic Memory Based on Nanometer‐Thin Ferromagnetic van der Waals Fe3GeTe2 , 2020, Advanced materials.

[4]  Alemayehu S. Admasu,et al.  Strain‐Sensitive Magnetization Reversal of a van der Waals Magnet , 2020, Advanced materials.

[5]  Kang L. Wang,et al.  Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure , 2020, Nature Communications.

[6]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[7]  N. Tamura,et al.  Highly Enhanced Curie Temperature in Ga‐Implanted Fe3GeTe2 van der Waals Material , 2020, Advanced Quantum Technologies.

[8]  Xiaodong Xu,et al.  Layer-resolved magnetic proximity effect in van der Waals heterostructures , 2020, Nature Nanotechnology.

[9]  Hyung-jun Kim,et al.  Controlling the magnetic anisotropy of van der Waals ferromagnet Fe3GeTe2 through hole doping. , 2019, Nano letters.

[10]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[11]  Qiming Shao,et al.  Highly Efficient Spin-Orbit Torque and Switching of Layered Ferromagnet Fe3GeTe2. , 2019, Nano letters.

[12]  Yong Peng,et al.  Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 , 2019, Science Advances.

[13]  Alemayehu S. Admasu,et al.  Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature. , 2018, Nano letters.

[14]  J. Shim,et al.  Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal , 2018, Nature Materials.

[15]  Changgu Lee,et al.  Hard magnetic properties in nanoflake van der Waals Fe3GeTe2 , 2018, Nature Communications.

[16]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[17]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[18]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[19]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[20]  Yury Gogotsi,et al.  Two-dimensional heterostructures for energy storage , 2017, Nature Energy.

[21]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[22]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[23]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[24]  Wei Huang,et al.  Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. , 2016, Nature nanotechnology.

[25]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[26]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[27]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[28]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[29]  P. Wei,et al.  Strong Interfacial Exchange Field in 2D Material/Magnetic-Insulator Heterostructures: Graphene/EuS , 2015 .

[30]  Aaron M. Jones,et al.  Magnetic control of valley pseudospin in monolayer WSe2 , 2014, Nature Physics.

[31]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[32]  K. Shin,et al.  Determination of perpendicular magnetic anisotropy in ultrathin ferromagnetic films by extraordinary Hall voltage measurement. , 2009, The Review of scientific instruments.

[33]  U. Gradmann Magnetic surface anisotropies , 1986 .

[34]  J. Livingston A review of coercivity mechanisms (invited) , 1981 .

[35]  E. Revolinsky,et al.  Electrical Properties of the MoTe2−WTe2 and MoSe2−WSe2 Systems , 1964 .

[36]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.