Diffuse polarized emission in the LOFAR Two-meter Sky Survey

Faraday tomography allows us to map diffuse polarized synchrotron emission from our Galaxy and use it to interpret the magnetic field in the interstellar medium (ISM). We have applied Faraday tomography to 60 observations from the LOFAR Two-meter Sky Survey (LOTSS) and produced a Faraday depth cube mosaic covering 568 square degrees at high Galactic latitudes, at 4.′3 angular resolution and 1 rad m−2 Faraday depth resolution, with a typical noise level of 50–100 μJy per point spread function (PSF) per rotation measure spread function (RMSF; 40–80 mK RMSF−1). While parts of the images are strongly affected by instrumental polarization, we observed diffuse polarized emission throughout most of the field, with typical brightness between 1 and 6 K RMSF−1, and Faraday depths between − 7 and +25 rad m−2. We observed many new polarization features, some up to 15° in length. These include two regions with very uniformly structured, linear gradients in the Faraday depth; we measured the steepness of these gradients as 2.6 and 13 rad m−2 deg−1. We also observed a relationship between one of the gradients and an H I filament in the local ISM. Other ISM tracers were also checked for correlations with our polarization data and none were found, but very little signal was seen in most tracers in this region. We conclude that the LOTSS data are very well suited for Faraday tomography, and that a full-scale survey with all the LOTSS data has the potential to reveal many new Galactic polarization features and map out diffuse Faraday depth structure across the entire northern hemisphere.

[1]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[2]  T. Landecker,et al.  The Fan Region at 1.5 GHz - I. Polarized synchrotron emission extending beyond the Perseus Arm , 2017, 1702.02200.

[3]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[4]  M. J. Bentum,et al.  Initial LOFAR observations of epoch of reionization windows: II. Diffuse polarized emission in the ELAIS-N1 field , 2014, 1407.2093.

[5]  Bryan M. Gaensler,et al.  Analytic detection thresholds for measurements of linearly polarized intensity using rotation measure synthesis , 2012, 1205.5310.

[6]  D. J. Saikia,et al.  The Low-Frequency Radio Universe , 2009 .

[7]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[8]  Melanie Johnston-Hollitt,et al.  An improved method for polarimetric image restoration in interferometry , 2016, 1606.01482.

[9]  T. Ensslin,et al.  Faraday caustics - Singularities in the Faraday spectrum and their utility as probes of magnetic field properties , 2011, 1105.2693.

[10]  A. H. Patil,et al.  Linear polarization structures in LOFAR observations of the interstellar medium in the 3C 196 field , 2015, 1508.06650.

[11]  S. Zaroubi,et al.  Galactic interstellar filaments as probed by LOFAR and Planck , 2015, 1508.06652.

[12]  K. Lee,et al.  Rotation measure synthesis revisited , 2014, 1411.1412.

[13]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[14]  A. R. Whitney,et al.  LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE , 2016, 1607.05779.

[15]  M. Remazeilles,et al.  An improved source-subtracted and destriped 408 MHz all-sky map , 2014, 1411.3628.

[16]  A. Lazarian,et al.  MHD Turbulence, Turbulent Dynamo and Applications , 2014, 1406.1185.

[17]  Douglas P. Finkbeiner,et al.  ON GALACTIC DENSITY MODELING IN THE PRESENCE OF DUST EXTINCTION , 2015, 1509.06751.

[18]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[19]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[20]  T. L. Landecker,et al.  An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations , 2005, astro-ph/0510456.

[21]  D. O. Astronomy,et al.  The Westerbork SINGS survey - II Polarization, Faraday rotation, and magnetic fields , 2009, 0905.3995.

[22]  A. R. Whitney,et al.  A 189 MHz, 2400 deg2 POLARIZATION SURVEY WITH THE MURCHISON WIDEFIELD ARRAY 32-ELEMENT PROTOTYPE , 2013, 1305.6047.

[23]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[24]  A. Bruyn,et al.  WSRT Faraday tomography of the Galactic ISM at λ ~ 0.86 m. I. The GEMINI data set at (l, b) = (181°, 20°) , 2009 .

[25]  H. Rottgering,et al.  Polarized point sources in the LOFAR Two-meter Sky Survey: A preliminary catalog , 2018, 1801.04467.

[26]  Peter C. Tribble,et al.  Depolarization of extended radio sources by a foreground Faraday screen , 1991 .

[27]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[28]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[29]  H. Rottgering,et al.  Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342* , 2016, 1612.00710.

[30]  Donald P. Cox,et al.  Galactic hydrostatic equilibrium with magnetic tension and cosmic-ray diffusion , 1990 .

[31]  M. Johnston-Hollitt,et al.  ON THE RELIABILITY OF POLARIZATION ESTIMATION USING ROTATION MEASURE SYNTHESIS , 2012, 1203.2706.

[32]  T. J. Dijkema,et al.  The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release , 2016, 1611.02700.

[33]  S. Bhatnagar,et al.  Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR , 2012, 1212.6178.

[34]  D. Sokoloff,et al.  Galactic Magnetism: Recent developments and perspectives , 1996 .

[35]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[36]  Marijke Haverkorn,et al.  Rotation measure synthesis at the 2 m wavelength of the FAN region: unveiling screens and bubbles , 2012, 1210.6801.

[37]  L. Eyer,et al.  3D maps of the local ISM from inversion of individual color excess measurements , 2013, 1309.6100.

[38]  J. M. Dickey,et al.  GMIMS: the Global Magneto-Ionic Medium Survey , 2008, Proceedings of the International Astronomical Union.

[39]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[40]  S. Djorgovski,et al.  ERRATUM - A THIRD UPDATE OF THE STATUS OF THE 3CR SOURCES - FURTHER NEW REDSHIFTS AND NEW IDENTIFICATIONS OF DISTANT GALAXIES , 1985 .

[41]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[42]  B. Winkel,et al.  The Effelsberg-Bonn H i Survey: Milky Way gas - First data release , 2015, 1512.05348.