The Multiple Zeta Value data mine

Abstract We provide a data mine of proven results for Multiple Zeta Values (MZVs) of the form ζ ( s 1 , s 2 , … , s k ) = ∑ n 1 > n 2 > ⋯ > n k > 0 ∞ { 1 / ( n 1 s 1 ⋯ n k s k ) } with weight w = ∑ i = 1 k s i and depth k and for Euler sums of the form ∑ n 1 > n 2 > ⋯ > n k > 0 ∞ { ( ϵ 1 n 1 ⋯ ϵ 1 n k ) / ( n 1 s 1 ⋯ n k s k ) } with signs ϵ i = ± 1 . Notably, we achieve explicit proven reductions of all MZVs with weights w ⩽ 22 , and all Euler sums with weights w ⩽ 12 , to bases whose dimensions, bigraded by weight and depth, have sizes in precise agreement with the Broadhurst–Kreimer and Broadhurst conjectures. Moreover, we lend further support to these conjectures by studying even greater weights ( w ⩽ 30 ), using modular arithmetic. To obtain these results we derive a new type of relation for Euler sums, the Generalized Doubling Relations. We elucidate the “pushdown” mechanism, whereby the ornate enumeration of primitive MZVs, by weight and depth, is reconciled with the far simpler enumeration of primitive Euler sums. There is some evidence that this pushdown mechanism finds its origin in doubling relations. We hope that our data mine, obtained by exploiting the unique power of the computer algebra language form , will enable the study of many more such consequences of the double-shuffle algebra of MZVs, and their Euler cousins, which are already the subject of keen interest, to practitioners of Quantum Field Theory, and to mathematicians alike.

[1]  Michel Waldschmidt,et al.  Valeurs zêta multiples. Une introduction , 2000 .

[2]  Johannes Blumlein,et al.  Structural Relations Between Harmonic Sums up to w=6 , 2007, 0706.2426.

[3]  Frédéric Fauvet,et al.  Formal computations about multiple zeta values , 2003 .

[4]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[5]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[6]  S. Moch,et al.  The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.

[7]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.

[8]  Tomohide Terasoma,et al.  Mixed Tate motives and multiple zeta values , 2002 .

[9]  K. S. Kölbig,et al.  Nielsen's generalized polylogarithms , 1986 .

[10]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[11]  Ettore Remiddi,et al.  Electron form factors up to fourth order. - I , 1972 .

[12]  Jonathan M. Borwein,et al.  Evaluation of Triple Euler Sums , 1996, Electron. J. Comb..

[13]  Hiroshi Tsunogai,et al.  On ranks of the stable derivation algebra and Deligne's problem , 1997 .

[14]  E. A. Ulanskii Multiple zeta values , 2011 .

[15]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[16]  Dennis W. Duke,et al.  Table of integrals and formulae for Feynman diagram calculations , 1983 .

[17]  R. C. Lyndon On Burnside’s problem. II , 1955 .

[18]  David J. Broadhurst,et al.  On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory , 1996 .

[19]  Masayuki Noro,et al.  On a Conjecture for the Dimension of the Space of the Multiple Zeta Values , 2008 .

[20]  Daniel Shanks,et al.  Strong primality tests that are not sufficient , 1982 .

[21]  A. K. Agarwal Number theory and discrete mathematics , 2002 .

[22]  E. Witt,et al.  Treue Darstellung Liescher Ringe. , 1937 .

[23]  Okuda Jun-ichi,et al.  The Sum Formula for Multiple Zeta Values and Connection Problem of the Formal Knizhnik-Zamolodchikov Equation , 2005 .

[24]  Henri Poincaré,et al.  Sur les groupes des équations linéaires , 1884 .

[25]  Stéphane Fischler,et al.  Irrationalité de valeurs de zêta , 2003 .

[26]  A. De Freitas,et al.  The Longitudinal Heavy Quark Structure Function F QQL in the Region Q 2 ≫ m 2 at O ( α 3 s ) , 2006 .

[27]  Johannes Blumlein,et al.  Structural Relations of Harmonic Sums and Mellin Transforms at Weight w=6 , 2009, 0901.0837.

[28]  Hidekazu Furusho The Multiple Zeta Value Algebra and the Stable Derivation Algebra , 2000 .

[29]  Johannes Blümlein,et al.  Algebraic relations between harmonic sums and associated quantities , 2004 .

[30]  Wadim Zudilin,et al.  Algebraic relations for multiple zeta values , 2003 .

[31]  Yasuo Ohno,et al.  A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .

[32]  Michael E. Hoffman,et al.  Relations of multiple zeta values and their algebraic expression , 2000 .

[33]  Jianqiang Zhao,et al.  Linear Relations of Special Values of Multiple Polylogarithms at Roots of Unity , 2007 .

[34]  Pierre Cartier,et al.  Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .

[35]  Michael E. Hoffman,et al.  Sums of Triple Harmonic Series , 1996 .

[36]  M. Ademollo,et al.  Cabibbo theory and current algebra , 1984 .

[37]  P. Deligne,et al.  Groupes fondamentaux motiviques de Tate mixte , 2003 .

[38]  YVES ANDRÉ ideas ” in Arithmetic, Complex Analysis, Transcendental Number Theory , 2008 .

[39]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[40]  David M. Bradley,et al.  The Algebra and Combinatorics of Shuffles and Multiple Zeta Values , 2003, J. Comb. Theory, Ser. A.

[41]  Johannes Blumlein,et al.  Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.

[42]  D. J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .

[43]  Georges Racinet,et al.  Series generatrices non-commutatives de polyzetas et associateurs de drinfel'd , 2000 .

[44]  Christian Bogner,et al.  Periods and Feynman integrals , 2007, 0711.4863.

[45]  Jianqiang Zhao,et al.  Standard relations of multiple polylogarithm values at roots of unity , 2007, Documenta Mathematica.

[46]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[47]  Michael E. Hoffman Algebraic Aspects of Multiple Zeta Values , 2003, math/0309425.

[48]  Paul Kutler,et al.  A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .

[49]  Yasuo Ohno,et al.  Cyclic sum of multiple zeta values , 2006 .

[50]  K. Ihara,et al.  Derivation and double shuffle relations for multiple zeta values , 2006, Compositio Mathematica.

[51]  Burton S. Kaliski,et al.  Polynomial Time , 2005, Encyclopedia of Cryptography and Security.

[52]  Johannes Blümlein,et al.  Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..

[53]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[54]  Alexander Varchenko,et al.  Hypergeometric theta functions and elliptic Macdonald polynomials , 2003 .

[55]  Gérard Jacob,et al.  Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables , 2002, Theor. Comput. Sci..

[56]  Helmut Hasse,et al.  Ein Summierungsverfahren für die Riemannsche ζ-Reihe , 1930 .

[57]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[58]  R. Barbieri,et al.  Electron form factors up to fourth order. - II , 1972 .

[59]  A. Vogt,et al.  The Three-Loop Splitting Functions in QCD: The Non-Singlet Case , 2004, hep-ph/0403192.

[60]  A. Goncharov,et al.  Multiple polylogarithms and mixed Tate motives , 2001 .

[61]  J.A.M. Vermaseren Tuning FORM with large calculations , 2003 .

[62]  Walter Troost,et al.  On the Evaluation of Polylogarithmic Integrals , 1980 .

[63]  C. Markett,et al.  Triple Sums and the Riemann Zeta Function , 1994 .

[64]  A. De Freitas,et al.  The Longitudinal Heavy Quark Structure Function F_L^Q\barQ in the Region Q^2 ≫m^2 at O(\alpha_s^3) , 2006 .

[65]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[66]  B. Engquist,et al.  Mathematics Unlimited: 2001 and Beyond , 2001 .

[67]  Ralph Roskies,et al.  Analytic contributions to the g factor of the electron in sixth order , 1976 .

[68]  David H. Bailey,et al.  Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..

[69]  E. Witt,et al.  Die Unterringe der freien Lieschen Ringe , 1956 .

[70]  Jun Murakami,et al.  Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions , 1995 .

[71]  Jianqiang Zhao,et al.  Double Shuffle Relations of Euler Sums , 2007, 0705.2267.

[72]  David M. Bradley,et al.  Multiple Zeta Values , 2005 .

[73]  J. A. M. Vermaseren,et al.  The multithreaded version of FORM , 2007, Comput. Phys. Commun..

[74]  R. Lyndon On Burnside’s problem , 1954 .

[75]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[76]  Andrew Granville,et al.  Analytic Number Theory: A Decomposition of Riemann's Zeta-Function , 1997 .

[77]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[78]  J.A.M. Vermaseren,et al.  New features of FORM , 2000 .

[79]  Manuel Kauers,et al.  Determining the closed forms of the O(sS3) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra , 2009, Comput. Phys. Commun..

[80]  S. Lang Number Theory III , 1991 .

[81]  N. Nielsen,et al.  Handbuch der Theorie der Gammafunktion , 1906 .

[82]  É. Lucas,et al.  Theorie des Fonctions Numeriques Simplement Periodiques. [Continued] , 1878 .

[83]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[84]  Kuo-Tsai Chen,et al.  Formal differential equations , 1961 .

[85]  Francis Brown,et al.  The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.

[86]  Jun-ichi Okuda,et al.  The Sum Formula of Multiple Zeta Values and Connection Problem of the Formal Knizhnik-Zamolodchikov Equation , 2003 .

[87]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[88]  Adolf Hurwitz Einige Eigenschaften der Dirichlet’schen Funktionen F ( s ) = ∑ ( D n ) ⋅ 1 n s $$F(s) = \sum {\left( {\frac{D}{n}} \right) \cdot \frac{1}{{{n^s}}}} $$, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten , 1932 .

[89]  Jonathan M. Borwein,et al.  Experimental Evaluation of Euler Sums , 1994, Exp. Math..

[90]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .

[91]  Laurence Sigler,et al.  Fibonacci's Liber abaci , 2002 .

[92]  Don Zagier,et al.  Multiple zeta values of fixed weight, depth, and height , 2001 .

[93]  N. Hofreiter,et al.  Der Eulersche Dilogarithmus und seine Verallgemeinerungen , 1973 .

[94]  M. Waldschmidt,et al.  Multiple Polylogarithms: An Introduction , 2002 .

[95]  Felix Yndurain,et al.  Second-order contributions to the structure functions in deep inelastic scattering: (II) Comparison with experiment for the non-singlet contributions to e, μ-nucleon scattering , 1979 .

[96]  Michel Petitot,et al.  Combinatorial aspects of polylogarithms and Euler-Zagier sums. (Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier.) , 1999 .

[97]  Jonathan M. Borwein,et al.  Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..

[98]  D. J. Broadhurst,et al.  Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots , 1996 .

[99]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[100]  Kuo-Tsai Chen,et al.  Iterated Integrals of Differential Forms and Loop Space Homology , 1973 .