The Multiple Zeta Value data mine
暂无分享,去创建一个
J. A. M. Vermaseren | Johannes Blümlein | D. J. Broadhurst | D. Broadhurst | J. Blümlein | J. Vermaseren
[1] Michel Waldschmidt,et al. Valeurs zêta multiples. Une introduction , 2000 .
[2] Johannes Blumlein,et al. Structural Relations Between Harmonic Sums up to w=6 , 2007, 0706.2426.
[3] Frédéric Fauvet,et al. Formal computations about multiple zeta values , 2003 .
[4] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[5] S. Kurth,et al. Harmonic sums and Mellin transforms up to two-loop order , 1999 .
[6] S. Moch,et al. The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.
[7] D. J. Broadhurst,et al. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.
[8] Tomohide Terasoma,et al. Mixed Tate motives and multiple zeta values , 2002 .
[9] K. S. Kölbig,et al. Nielsen's generalized polylogarithms , 1986 .
[10] Michael E. Hoffman,et al. Multiple harmonic series. , 1992 .
[11] Ettore Remiddi,et al. Electron form factors up to fourth order. - I , 1972 .
[12] Jonathan M. Borwein,et al. Evaluation of Triple Euler Sums , 1996, Electron. J. Comb..
[13] Hiroshi Tsunogai,et al. On ranks of the stable derivation algebra and Deligne's problem , 1997 .
[14] E. A. Ulanskii. Multiple zeta values , 2011 .
[15] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[16] Dennis W. Duke,et al. Table of integrals and formulae for Feynman diagram calculations , 1983 .
[17] R. C. Lyndon. On Burnside’s problem. II , 1955 .
[18] David J. Broadhurst,et al. On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory , 1996 .
[19] Masayuki Noro,et al. On a Conjecture for the Dimension of the Space of the Multiple Zeta Values , 2008 .
[20] Daniel Shanks,et al. Strong primality tests that are not sufficient , 1982 .
[21] A. K. Agarwal. Number theory and discrete mathematics , 2002 .
[22] E. Witt,et al. Treue Darstellung Liescher Ringe. , 1937 .
[23] Okuda Jun-ichi,et al. The Sum Formula for Multiple Zeta Values and Connection Problem of the Formal Knizhnik-Zamolodchikov Equation , 2005 .
[24] Henri Poincaré,et al. Sur les groupes des équations linéaires , 1884 .
[25] Stéphane Fischler,et al. Irrationalité de valeurs de zêta , 2003 .
[26] A. De Freitas,et al. The Longitudinal Heavy Quark Structure Function F QQL in the Region Q 2 ≫ m 2 at O ( α 3 s ) , 2006 .
[27] Johannes Blumlein,et al. Structural Relations of Harmonic Sums and Mellin Transforms at Weight w=6 , 2009, 0901.0837.
[28] Hidekazu Furusho. The Multiple Zeta Value Algebra and the Stable Derivation Algebra , 2000 .
[29] Johannes Blümlein,et al. Algebraic relations between harmonic sums and associated quantities , 2004 .
[30] Wadim Zudilin,et al. Algebraic relations for multiple zeta values , 2003 .
[31] Yasuo Ohno,et al. A Generalization of the Duality and Sum Formulas on the Multiple Zeta Values , 1999 .
[32] Michael E. Hoffman,et al. Relations of multiple zeta values and their algebraic expression , 2000 .
[33] Jianqiang Zhao,et al. Linear Relations of Special Values of Multiple Polylogarithms at Roots of Unity , 2007 .
[34] Pierre Cartier,et al. Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents , 2001 .
[35] Michael E. Hoffman,et al. Sums of Triple Harmonic Series , 1996 .
[36] M. Ademollo,et al. Cabibbo theory and current algebra , 1984 .
[37] P. Deligne,et al. Groupes fondamentaux motiviques de Tate mixte , 2003 .
[38] YVES ANDRÉ. ideas ” in Arithmetic, Complex Analysis, Transcendental Number Theory , 2008 .
[39] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[40] David M. Bradley,et al. The Algebra and Combinatorics of Shuffles and Multiple Zeta Values , 2003, J. Comb. Theory, Ser. A.
[41] Johannes Blumlein,et al. Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.
[42] D. J. Broadhurst. Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .
[43] Georges Racinet,et al. Series generatrices non-commutatives de polyzetas et associateurs de drinfel'd , 2000 .
[44] Christian Bogner,et al. Periods and Feynman integrals , 2007, 0711.4863.
[45] Jianqiang Zhao,et al. Standard relations of multiple polylogarithm values at roots of unity , 2007, Documenta Mathematica.
[46] Michel Petitot,et al. Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..
[47] Michael E. Hoffman. Algebraic Aspects of Multiple Zeta Values , 2003, math/0309425.
[48] Paul Kutler,et al. A Polynomial Time, Numerically Stable Integer Relation Algorithm , 1998 .
[49] Yasuo Ohno,et al. Cyclic sum of multiple zeta values , 2006 .
[50] K. Ihara,et al. Derivation and double shuffle relations for multiple zeta values , 2006, Compositio Mathematica.
[51] Burton S. Kaliski,et al. Polynomial Time , 2005, Encyclopedia of Cryptography and Security.
[52] Johannes Blümlein,et al. Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..
[53] Stefan Weinzierl,et al. Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .
[54] Alexander Varchenko,et al. Hypergeometric theta functions and elliptic Macdonald polynomials , 2003 .
[55] Gérard Jacob,et al. Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables , 2002, Theor. Comput. Sci..
[56] Helmut Hasse,et al. Ein Summierungsverfahren für die Riemannsche ζ-Reihe , 1930 .
[57] A. Goncharov,et al. Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.
[58] R. Barbieri,et al. Electron form factors up to fourth order. - II , 1972 .
[59] A. Vogt,et al. The Three-Loop Splitting Functions in QCD: The Non-Singlet Case , 2004, hep-ph/0403192.
[60] A. Goncharov,et al. Multiple polylogarithms and mixed Tate motives , 2001 .
[61] J.A.M. Vermaseren. Tuning FORM with large calculations , 2003 .
[62] Walter Troost,et al. On the Evaluation of Polylogarithmic Integrals , 1980 .
[63] C. Markett,et al. Triple Sums and the Riemann Zeta Function , 1994 .
[64] A. De Freitas,et al. The Longitudinal Heavy Quark Structure Function F_L^Q\barQ in the Region Q^2 ≫m^2 at O(\alpha_s^3) , 2006 .
[65] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[66] B. Engquist,et al. Mathematics Unlimited: 2001 and Beyond , 2001 .
[67] Ralph Roskies,et al. Analytic contributions to the g factor of the electron in sixth order , 1976 .
[68] David H. Bailey,et al. Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..
[69] E. Witt,et al. Die Unterringe der freien Lieschen Ringe , 1956 .
[70] Jun Murakami,et al. Kontsevich's integral for the Homfly polynomial and relations between values of multiple zeta functions , 1995 .
[71] Jianqiang Zhao,et al. Double Shuffle Relations of Euler Sums , 2007, 0705.2267.
[72] David M. Bradley,et al. Multiple Zeta Values , 2005 .
[73] J. A. M. Vermaseren,et al. The multithreaded version of FORM , 2007, Comput. Phys. Commun..
[74] R. Lyndon. On Burnside’s problem , 1954 .
[75] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .
[76] Andrew Granville,et al. Analytic Number Theory: A Decomposition of Riemann's Zeta-Function , 1997 .
[77] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[78] J.A.M. Vermaseren,et al. New features of FORM , 2000 .
[79] Manuel Kauers,et al. Determining the closed forms of the O(sS3) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra , 2009, Comput. Phys. Commun..
[80] S. Lang. Number Theory III , 1991 .
[81] N. Nielsen,et al. Handbuch der Theorie der Gammafunktion , 1906 .
[82] É. Lucas,et al. Theorie des Fonctions Numeriques Simplement Periodiques. [Continued] , 1878 .
[83] É. Lucas. Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .
[84] Kuo-Tsai Chen,et al. Formal differential equations , 1961 .
[85] Francis Brown,et al. The Massless Higher-Loop Two-Point Function , 2008, 0804.1660.
[86] Jun-ichi Okuda,et al. The Sum Formula of Multiple Zeta Values and Connection Problem of the Formal Knizhnik-Zamolodchikov Equation , 2003 .
[87] A. Vogt,et al. The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.
[88] Adolf Hurwitz. Einige Eigenschaften der Dirichlet’schen Funktionen F ( s ) = ∑ ( D n ) ⋅ 1 n s $$F(s) = \sum {\left( {\frac{D}{n}} \right) \cdot \frac{1}{{{n^s}}}} $$, die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten , 1932 .
[89] Jonathan M. Borwein,et al. Experimental Evaluation of Euler Sums , 1994, Exp. Math..
[90] Michael E. Hoffman,et al. The Algebra of Multiple Harmonic Series , 1997 .
[91] Laurence Sigler,et al. Fibonacci's Liber abaci , 2002 .
[92] Don Zagier,et al. Multiple zeta values of fixed weight, depth, and height , 2001 .
[93] N. Hofreiter,et al. Der Eulersche Dilogarithmus und seine Verallgemeinerungen , 1973 .
[94] M. Waldschmidt,et al. Multiple Polylogarithms: An Introduction , 2002 .
[95] Felix Yndurain,et al. Second-order contributions to the structure functions in deep inelastic scattering: (II) Comparison with experiment for the non-singlet contributions to e, μ-nucleon scattering , 1979 .
[96] Michel Petitot,et al. Combinatorial aspects of polylogarithms and Euler-Zagier sums. (Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier.) , 1999 .
[97] Jonathan M. Borwein,et al. Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k , 1996, Electron. J. Comb..
[98] D. J. Broadhurst,et al. Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots , 1996 .
[99] Jonathan M. Borwein,et al. Special values of multiple polylogarithms , 1999, math/9910045.
[100] Kuo-Tsai Chen,et al. Iterated Integrals of Differential Forms and Loop Space Homology , 1973 .