Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells

HsSAS-6 homodimers are present in the cytoplasm and assemble into ninefold symmetrical arrays at centrosomes, thus initiating procentriole formation.

[1]  J. Loncarek,et al.  Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152 , 2013, Proceedings of the National Academy of Sciences.

[2]  P. Gönczy,et al.  Resolution Doubling in 3D-STORM Imaging through Improved Buffers , 2013, PloS one.

[3]  Suliana Manley,et al.  Simple buffers for 3D STORM microscopy , 2013, Biomedical optics express.

[4]  K. Oegema,et al.  Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. , 2013, Developmental cell.

[5]  T. Tang,et al.  Human microcephaly protein CEP135 binds to hSAS‐6 and CPAP, and is required for centriole assembly , 2013, The EMBO journal.

[6]  P. Gönczy,et al.  Selective Chemical Crosslinking Reveals a Cep57-Cep63-Cep152 Centrosomal Complex , 2013, Current Biology.

[7]  T. Avidor-Reiss,et al.  Building a centriole. , 2013, Current opinion in cell biology.

[8]  T. Stearns,et al.  Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease , 2012, PloS one.

[9]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[10]  Laurence Pelletier,et al.  Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material , 2012, Nature Cell Biology.

[11]  Heinrich Leonhardt,et al.  3D-structured illumination microscopy provides novel insight into architecture of human centrosomes , 2012, Biology Open.

[12]  P. Gönczy,et al.  Cartwheel Architecture of Trichonympha Basal Body , 2012, Science.

[13]  W E Moerner,et al.  STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. , 2012, Biophysical journal.

[14]  P. Gönczy Towards a molecular architecture of centriole assembly , 2012, Nature Reviews Molecular Cell Biology.

[15]  H. Zentgraf,et al.  STIL is required for centriole duplication in human cells , 2012, Journal of Cell Science.

[16]  E. Nigg,et al.  Cell-cycle-regulated expression of STIL controls centriole number in human cells , 2012, Journal of Cell Science.

[17]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[18]  P. Gönczy,et al.  The SCF–FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication , 2011, Nature Cell Biology.

[19]  D. Pellman,et al.  Centrosomes and cilia in human disease. , 2011, Trends in genetics : TIG.

[20]  C. Robinson,et al.  Structures of SAS-6 Suggest Its Organization in Centrioles , 2011, Science.

[21]  P. Gönczy,et al.  Structural Basis of the 9-Fold Symmetry of Centrioles , 2011, Cell.

[22]  T. Stearns,et al.  Cep152 interacts with Plk4 and is required for centriole duplication , 2010, The Journal of cell biology.

[23]  I. Hoffmann,et al.  Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome , 2010, The Journal of cell biology.

[24]  D. Glover,et al.  Asterless is a scaffold for the onset of centriole assembly , 2010, Nature.

[25]  W. Marshall,et al.  Building the Centriole , 2010, Current Biology.

[26]  A. Tassin,et al.  Procentriole assembly revealed by cryo‐electron tomography , 2010, The EMBO journal.

[27]  Filipe Tavares-Cadete,et al.  Stepwise evolution of the centriole-assembly pathway , 2010, Journal of Cell Science.

[28]  J. Raff,et al.  Drosophila Ana2 is a conserved centriole duplication factor , 2010, The Journal of cell biology.

[29]  D. Agard,et al.  Self-assembling SAS-6 Multimer Is a Core Centriole Building Block* , 2010, The Journal of Biological Chemistry.

[30]  J. Raff,et al.  Centrioles, Centrosomes, and Cilia in Health and Disease , 2009, Cell.

[31]  P. Lichter,et al.  Assembly and mobility of exon-exon junction complexes in living cells. , 2009, RNA.

[32]  P. Gönczy,et al.  Mechanisms of procentriole formation. , 2008, Trends in cell biology.

[33]  M. Hirono,et al.  SAS-6 is a Cartwheel Protein that Establishes the 9-Fold Symmetry of the Centriole , 2007, Current Biology.

[34]  Michael Knop,et al.  Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling , 2007, Nature Cell Biology.

[35]  Sebastian A. Leidel,et al.  Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. , 2007, Developmental cell.

[36]  E. Nigg,et al.  Plk4-induced centriole biogenesis in human cells. , 2007, Developmental cell.

[37]  T. Stearns,et al.  Molecular characterization of centriole assembly in ciliated epithelial cells , 2007, The Journal of cell biology.

[38]  M. Bornens,et al.  Structure and duplication of the centrosome , 2007, Journal of Cell Science.

[39]  D. Gründemann,et al.  Fast set‐up of doxycycline‐inducible protein expression in human cell lines with a single plasmid based on Epstein–Barr virus replication and the simple tetracycline repressor , 2007, The FEBS journal.

[40]  Sebastian A. Leidel,et al.  SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells , 2005, Nature Cell Biology.

[41]  J Langowski,et al.  Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. , 2000, Journal of molecular biology.

[42]  M. Bornens,et al.  A Role for Centrin 3 in Centrosome Reproduction , 2000, The Journal of cell biology.

[43]  W. Webb,et al.  Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Buendia,et al.  Reconstruction of the centrosome cycle from cryoelectron micrographs. , 1997, Journal of structural biology.

[45]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[46]  G. Borisy,et al.  Centriole cycle in Chinese hamster ovary cells as determined by whole- mount electron microscopy , 1981, The Journal of cell biology.

[47]  T. Cavalier-smith Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. , 1974, Journal of cell science.

[48]  R. V. Dippell The development of basal bodies in paramecium. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. A. Bulseco,et al.  Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells. , 2013, Methods in cell biology.

[50]  W. Marshall Centriole evolution. , 2009, Current opinion in cell biology.

[51]  Huimin Chen,et al.  Chapter 1: In vivo applications of fluorescence correlation spectroscopy. , 2008, Methods in cell biology.

[52]  D. A. Bulseco,et al.  Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells. , 2003, Methods in cell biology.

[53]  M. Bornens,et al.  Structural and chemical characterization of isolated centrosomes. , 1987, Cell motility and the cytoskeleton.