Contour discontinuities subserve two types of form analysis that underlie motion processing.

Form analysis subserves motion processing in at least two ways: first, in terms of figural segmentation dedicated to solving the problem of figure-to-figure matching over time, and second, in terms of defining trackable features whose unambiguous motion signals can be generalized to ambiguously moving portions of an object. The former is a primarily ventral process involving the lateral occipital complex and also retinotopic areas such as V2 and V4, and the latter is a dorsal process involving V3A. Contour discontinuities, such as corners, deep concavities, maxima of positive curvature, junctions, and terminators, play a central role in both types of form analysis. Transformational apparent motion will be discussed in the context of figural segmentation and matching, and rotational motion in the context of trackable features. In both cases the analysis of form must proceed in parallel with the analysis of motion, in order to constrain the ongoing analysis of motion.

[1]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[2]  Peter U. Tse,et al.  Neural correlates of transformational apparent motion , 2006, NeuroImage.

[3]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[4]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[5]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[6]  R. L. Knoll,et al.  The Perception of Temporal Order: Fundamental Issues and a General Model , 1973 .

[7]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[8]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[9]  J Faubert,et al.  Intraattribute and Interattribute Motion Induction , 1994, Perception.

[10]  P. Cavanagh,et al.  Position-based motion perception for color and texture stimuli: effects of contrast and speed , 1999, Vision Research.

[11]  Johannes M. Zanker,et al.  Interaction between primary and secondary mechanisms in human motion perception , 1994, Vision Research.

[12]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[13]  Richard A. Andersen,et al.  Recovering three-dimensional structure from motion with surface reconstruction , 1991, Vision Research.

[14]  Alan C. Evans,et al.  Cortical specialization for processing first- and second-order motion. , 2003, Cerebral cortex.

[15]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[16]  V S Ramachandran,et al.  Low Spatial Frequencies Dominate Apparent Motion , 1983, Perception.

[17]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[18]  I Mareschal,et al.  Cortical processing of second-order motion , 1999, Visual Neuroscience.

[19]  Ronald A. Rensink,et al.  Preattentive recovery of three-dimensional orientation from line drawings. , 1991, Psychological review.

[20]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[21]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[22]  G. Sperling,et al.  The dimensionality of texture-defined motion: a single channel theory , 1993, Vision Research.

[23]  Scott O. Murray,et al.  Processing Shape, Motion and Three-dimensional Shape-from-motion in the Human Cortex , 2003 .

[24]  Aijaz A. Baloch,et al.  A neural model of high-level motion processing: Line motion and formotion dynamics , 1997, Vision Research.

[25]  Jocelyn Faubert,et al.  The influence of two spatially distinct primers and attribute priming on motion induction , 1995, Vision Research.

[26]  Shimon Ullman,et al.  Shape‐selective stereo processing in human object‐related visual areas , 2002, Human brain mapping.

[27]  Margaret S Livingstone,et al.  End-Stopping and the Aperture Problem Two-Dimensional Motion Signals in Macaque V1 , 2003, Neuron.

[28]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[29]  John A. Baro,et al.  Apparent motion can be perceived between patterns with dissimilar spatial frequencies , 1988, Vision Research.

[30]  L. Stelmach,et al.  Directed attention and perception of temporal order. , 1991, Journal of experimental psychology. Human perception and performance.

[31]  V. Ramachandran,et al.  The perception of apparent motion. , 1986, Scientific American.

[32]  O. Hikosaka,et al.  Visual attention revealed by an illusion of motion , 1993, Neuroscience Research.

[33]  Ronald A. Rensink Visual Search for Change: A Probe into the Nature of Attentional Processing , 2000 .

[34]  D. Kahneman,et al.  The reviewing of object files: Object-specific integration of information , 1992, Cognitive Psychology.

[35]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[36]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[37]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[38]  S. Ullman,et al.  The interpretation of visual motion , 1977 .

[39]  J M Wolfe,et al.  Curvature is a Basic Feature for Visual Search Tasks , 1992, Perception.

[40]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[41]  Xoana G. Troncoso,et al.  Novel Visual Illusions Related to Vasarely's ‘Nested Squares’ Show That Corner Salience Varies with Corner Angle , 2005, Perception.

[42]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[43]  Marc Green,et al.  Color correspondence in apparent motion , 1989, Perception & psychophysics.

[44]  Motion Timothy Petersik A Comparison of Varieties of "Second-Order" , 1995 .

[45]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[46]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[47]  P. McOwan,et al.  A computational model of the analysis of some first-order and second-order motion patterns by simple and complex cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Peter Ulric Tse,et al.  The duration of 3-D form analysis in transformational apparent motion , 2002, Perception & psychophysics.

[49]  G. Mather,et al.  Evidence for second-order motion detectors , 1993, Vision Research.

[50]  Maggie Shiffrar,et al.  The influence of terminators on motion integration across space , 1992, Vision Research.

[51]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[52]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[53]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[54]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[55]  M Kubovy,et al.  The emergence of visual objects in space-time. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[57]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[58]  Maggie Shiffrar,et al.  Motion integration across differing image features , 1995, Vision Research.

[59]  Thomas D. Albright,et al.  The interpretation of visual motion: Evidence for surface segmentation mechanisms , 1996, Vision Research.

[60]  Michael von Grünau,et al.  A motion aftereffect for long-range troboscopic apparent motion , 1986 .

[61]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[62]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[63]  P. Tse,et al.  Mechanisms underlying the perceived angular velocity of a rigidly rotating object , 2006, Vision Research.

[64]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[65]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[66]  Mark M Schira,et al.  Differential contribution of early visual areas to the perceptual process of contour processing. , 2004, Journal of neurophysiology.

[67]  H. Bülthoff,et al.  Effects of temporal association on recognition memory , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  James V. Stone,et al.  Object recognition: view-specificity and motion-specificity , 1999, Vision Research.

[69]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[70]  S. Edelman,et al.  Rapid Shape Adaptation Reveals Position and Size Invariance in the Object-Related Lateral Occipital (LO) Complex. , 1998, NeuroImage.

[71]  J J Knierim,et al.  Neural responses to visual texture patterns in middle temporal area of the macaque monkey. , 1992, Journal of neurophysiology.

[72]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[73]  C. Gilbert Adult cortical dynamics. , 1998, Physiological reviews.

[74]  P. Cavanagh,et al.  Perception of Motion in Equiluminous Kinematograms , 1985, Perception.

[75]  T. Papathomas Early vision and beyond , 1995 .

[76]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[77]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[78]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[79]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[81]  A. Cowey,et al.  Can spatial and temporal motion integration compensate for deficits in local motion mechanisms? , 2003, Neuropsychologia.

[82]  J. Hulleman,et al.  Concavities as basic features in visual search: Evidence from search asymmetries , 2000, Perception & psychophysics.

[83]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[84]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[85]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[86]  Nikos K. Logothetis,et al.  Parallel pathways in the visual system: Their role in perception at isoluminance , 1991, Neuropsychologia.

[87]  Takeo Watanabe,et al.  Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI , 2005, Current Biology.

[88]  A. Derrington,et al.  Detecting and discriminating the direction of motion of luminance and colour gratings , 1993, Vision Research.

[89]  S. Zucker,et al.  Endstopped neurons in the visual cortex as a substrate for calculating curvature , 1987, Nature.

[90]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[91]  M Green,et al.  Correspondence in apparent motion: defining the heuristics , 1986 .

[92]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[93]  Yan Zhuo,et al.  Contributions of the Visual Ventral Pathway to Long-Range Apparent Motion , 2003, Science.

[94]  P U Tse,et al.  Amodal Completion in the Absence of Image Tangent Discontinuities , 1998, Perception.

[95]  J. Zanker Is facilitation responsible for the “motion induction” effect? , 1997, Vision Research.

[96]  Andrew T. Smith,et al.  Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision , 1994, Vision Research.

[97]  A. Derrington,et al.  Second-order motion discrimination by feature-tracking , 1999, Vision Research.

[98]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[99]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[100]  J. T. Petersik A comparison of varieties of “second-order” motion , 1995, Vision Research.

[101]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[102]  P Cavanagh,et al.  Attention-based motion perception. , 1992, Science.

[103]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.

[104]  Dennis M Levi,et al.  Integration of local features into a global shape , 2001, Vision Research.

[105]  Patrick Cavanagh,et al.  Interattribute apparent motion , 1989, Vision Research.

[106]  C. Baker,et al.  Envelope-responsive neurons in areas 17 and 18 of cat. , 1994, Journal of neurophysiology.

[107]  Tutis Vilis,et al.  The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. , 2003, Cerebral cortex.

[108]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[109]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[110]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[111]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[113]  Steven W. Zucker,et al.  Two Stages of Curve Detection Suggest Two Styles of Visual Computation , 1989, Neural Computation.

[114]  P. Tse,et al.  Stimulus factors affecting illusory rebound motion , 2006, Vision Research.

[115]  R. Andersen,et al.  Integration of motion and stereopsis in middle temporal cortical area of macaques , 1995, Nature.

[116]  A. Derrington,et al.  Discriminating the direction of second-order motion at short stimulus durations , 1993, Vision Research.

[117]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[118]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[119]  P. Tse,et al.  Illusory rebound motion and the motion continuity heuristic , 2005, Vision Research.

[120]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[121]  G. Sperling,et al.  Full-wave and half-wave rectification in second-order motion perception , 1994, Vision Research.

[122]  Taosheng Liu,et al.  Explicit and implicit memory for rotating objects. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[123]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[124]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  B. Bergum,et al.  Attention and performance IX , 1982 .

[126]  C L Baker,et al.  Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. , 1996, Journal of neurophysiology.

[127]  P. Tse,et al.  V3A processes contour curvature as a trackable feature for the perception of rotational motion. , 2007, Cerebral cortex.

[128]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[129]  Mary M. Conte,et al.  Motion mechanisms have only limited access to form information , 1990, Vision Research.

[130]  Georgios A. Keliris,et al.  A binocular rivalry study of motion perception in the human brain , 2005, Vision Research.

[131]  T. Albright,et al.  Motion coherency rules are form-cue invariant , 1992, Vision Research.

[132]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[133]  K. Nakayama,et al.  Occlusion and the solution to the aperture problem for motion , 1989, Vision Research.

[134]  H. Arkes The Nonuse of Psychological Research at Two Federal Agencies , 2003, Psychological science.

[135]  M. V. von Grünau A motion aftereffect for long-range stroboscopic apparent motion. , 1986, Perception & psychophysics.

[136]  E. Titchener Scientific Books: Lectures on the Elementary Psychology of Feeling and Attention , 1909 .

[137]  Takeo Watanabe,et al.  The role of parsing in high level motion processing , 1998 .

[138]  Taosheng Liu,et al.  Human MT+ mediates perceptual filling-in during apparent motion , 2004, NeuroImage.

[139]  G W Humphreys,et al.  Parallel Visual Coding in Three Dimensions , 1994, Perception.

[140]  P U Tse,et al.  Curvature discontinuities are cues for rapid shape analysis , 2001, Perception & psychophysics.

[141]  Todd S. Horowitz,et al.  Visual search has no memory , 1998, Nature.

[142]  Paul E. Downing,et al.  The line-motion illusion : attention or impletion? , 1997 .

[143]  Z L Lu,et al.  Three-systems theory of human visual motion perception: review and update. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[144]  D. Badcock,et al.  Global motion perception: No interaction between the first- and second-order motion pathways , 1995, Vision Research.

[145]  Patrick Cavanagh Is there low-level motion processing for non-luminance-based stimuli? , 1995 .

[146]  P A Kolers,et al.  Figural change in apparent motion. , 1971, Journal of experimental psychology.

[147]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[148]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[149]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[150]  M. Dawson,et al.  The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. , 1991, Psychological review.

[151]  D L Sheinberg,et al.  PSYCHOLOGICAL SCIENCE Research Article ATTENTIONAL ENHANCEMENT OPPOSITE A PERIPHERAL FLASH REVEALED USING CHANGE BLINDNESS , 2022 .

[152]  L. P. O'Keefe,et al.  Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey , 1998, Visual Neuroscience.

[153]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[154]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[155]  Adriane E Seiffert,et al.  Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. , 2003, Cerebral cortex.

[156]  K. Nakayama,et al.  The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines , 1988, Vision Research.

[157]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[158]  C. Baker,et al.  Temporal and spatial response to second-order stimuli in cat area 18. , 1998, Journal of neurophysiology.

[159]  P. Burt,et al.  Time, distance, and feature trade-offs in visual apparent motion. , 1981, Psychological review.

[160]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[161]  J. J. Koenderink,et al.  Illusory motion in visual displays , 1984, Vision Research.

[162]  Andrew T. Smith,et al.  The perceived speed of second-order motion and its dependence on stimulus contrast , 1995, Vision Research.

[163]  C L Baker,et al.  A processing stream in mammalian visual cortex neurons for non-Fourier responses. , 1993, Science.

[164]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[165]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[166]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. , 1986, Journal of neurophysiology.

[167]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[168]  Takeo Watanabe,et al.  High-Level Motion Processing , 1998 .

[169]  Marc Green,et al.  What determines correspondence strength in apparent motion? , 1986, Vision Research.

[170]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[171]  D. Navon,et al.  Irrelevance of figural identity for resolving ambiguities in apparent motion. , 1976, Journal of experimental psychology. Human perception and performance.

[172]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.