First ZnGa2O4 transparent ceramics

[1]  A. Singh,et al.  Zinc Gallium Oxide—A Review from Synthesis to Applications , 2020, Nanomaterials.

[2]  M. Baranov,et al.  Microstructure, doping and optical properties of Co2+:ZnAl2O4 transparent ceramics for saturable absorbers: Effect of the ZnF2 sintering additive , 2020 .

[3]  Chun Jiang,et al.  A facile approach towards fabrication and ultrabroad band emission properties of nickel ion-doped ZnAl2O4 transparent ceramics , 2020, Ceramics International.

[4]  Lijie Li,et al.  p-Type Ultrawide-Band-Gap Spinel ZnGa2O4: New Perspectives for Energy Electronics , 2020, Crystal Growth & Design.

[5]  Chongjun Zhao,et al.  The Second Near-Infrared Window Persistent Luminescence for Anti-Counterfeiting Application , 2020 .

[6]  G. Fantozzi,et al.  Mechanism of Carbon Contamination in Transparent MgAl2O4 and Y3Al5O12 Ceramics Sintered by Spark Plasma Sintering , 2019, Ceramics.

[7]  S. Shivashankar,et al.  Rapid annealing-transformed, intense-red-emitting Eu-doped ZnGa2O4 nanoparticles with high colour purity, for very-high-resolution display applications , 2019, Materials Research Bulletin.

[8]  L. A. Chiavacci,et al.  Nanosized ZnGa2O4:Cr3+ Spinels as Highly Luminescent Materials for Bioimaging , 2019, ACS Applied Nano Materials.

[9]  Anatoli I. Popov,et al.  Afterglow, TL and OSL properties of Mn2+-doped ZnGa2O4 phosphor , 2019, Scientific Reports.

[10]  Yan-Gu Lin,et al.  Study on Optoelectronic Characteristics of ZnGa2O4 Thin-Film Phototransistors , 2019, ACS Applied Electronic Materials.

[11]  A. Belyaev,et al.  Sol-gel synthesis and characterization of ZnAl2O4 powders for transparent ceramics , 2019, Ceramics International.

[12]  M. Albrecht,et al.  Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals , 2019, APL Materials.

[13]  D. Alloyeau,et al.  Luminescence properties of ZnGa2O4:Cr3+,Bi3+ nanophosphors for thermometry applications , 2018, RSC advances.

[14]  J. Qiu,et al.  Transition Metal Doped Smart Glass with Pressure and Temperature Sensitive Luminescence , 2018, Advanced Optical Materials.

[15]  N. Frage,et al.  Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated by Spark Plasma Sintering , 2018, Advanced materials.

[16]  M. Allix,et al.  Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics , 2018, Nature Communications.

[17]  J. Qiu,et al.  Tunable long persistent luminescence in the second near-infrared window via crystal field control , 2017, Scientific Reports.

[18]  Y. Sakka,et al.  Distribution of carbon contamination in MgAl 2 O 4 spinel occurring during spark-plasma-sintering (SPS) processing: I – Effect of heating rate and post-annealing , 2017, Journal of the European Ceramic Society.

[19]  A. Belyaev,et al.  A new approach to producing transparent ZnAl2O4 ceramics , 2017 .

[20]  Jun Yang,et al.  Selective doping of Ni2+ in highly transparent glass-ceramics containing nano-spinels ZnGa2O4 and Zn1+xGa2−2xGexO4 for broadband near-infrared fiber amplifiers , 2017, Scientific Reports.

[21]  Xavier Mateos,et al.  Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al,Ga)2O4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 µm , 2017 .

[22]  B. Viana,et al.  Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution. , 2017, Physical chemistry chemical physics : PCCP.

[23]  A. Goldstein,et al.  Transparent Ceramics at 50: Progress Made and Further Prospects , 2016 .

[24]  T. Hayakawa,et al.  Scalable and Formable Tellurite‐Based Transparent Ceramics for Near Infrared Applications , 2016 .

[25]  Y. Sakka,et al.  Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) , 2016 .

[26]  E. Wells Blue , 2016, Definitions.

[27]  M. Albrecht,et al.  MgGa2O4 as a new wide bandgap transparent semiconducting oxide: growth and properties of bulk single crystals , 2015 .

[28]  W. Fan,et al.  Direct Aqueous-Phase Synthesis of Sub-10 nm “Luminous Pearls” with Enhanced in Vivo Renewable Near-Infrared Persistent Luminescence , 2015, Journal of the American Chemical Society.

[29]  M. Allix,et al.  Long-lasting luminescent ZnGa 2 O 4 :Cr 3+ transparent glass-ceramics† , 2014 .

[30]  B. Viana,et al.  Origin of the visible light induced persistent luminescence of Cr3+-doped zinc gallate , 2014 .

[31]  Wang Xuehua,et al.  Optical properties of transparent ZnAl2O4 ceramics: A new transparent material prepared by spark plasma sintering , 2014 .

[32]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[33]  M. Allix,et al.  Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glass‐Ceramics , 2014 .

[34]  Didier Gourier,et al.  The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. , 2014, Nature materials.

[35]  H. Kleebe,et al.  Fifty Years of Research and Development Coming to Fruition; Unraveling the Complex Interactions during Processing of Transparent Magnesium Aluminate (MgAl2O4) Spinel , 2013 .

[36]  E. Alves,et al.  Microprobe analysis, iono- and photo-luminescence of Mn2+ activated ZnGa2O4 fibres , 2013 .

[37]  Salaheddine Alahrache,et al.  Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4 , 2013 .

[38]  M. Suchomel,et al.  Highly Transparent BaAl4O7 Polycrystalline Ceramic Obtained by Full Crystallization from Glass , 2012, Advanced materials.

[39]  Y. Yeshurun,et al.  Fabrication of Transparent Polycrystalline ZnAl2O4 – A New Optical Bulk Ceramic , 2012 .

[40]  M. Deschamps,et al.  Crystallization of Y2O3–Al2O3 Rich Glasses: Synthesis of YAG Glass-Ceramics , 2011 .

[41]  B. Viana,et al.  ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. , 2011, Optics express.

[42]  Junying Zhang,et al.  Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors , 2010 .

[43]  Heesun Yang,et al.  Blue, green, and red emission from undoped and doped ZnGa2O4 colloidal nanocrystals , 2009, Nanotechnology.

[44]  A. Roy,et al.  Optical emission spectra of chromium doped nanocrystalline zinc gallate , 2009 .

[45]  A. Krell,et al.  Transparent compact ceramics: Inherent physical issues , 2009 .

[46]  H. Marshall Afterglow , 2008, Science.

[47]  R. Won View from...ASSP 2008: Ceramic future , 2008 .

[48]  Rolf Apetz,et al.  Transparent Alumina: A Light‐Scattering Model , 2003 .

[49]  Seung-Bin Park,et al.  ZnGa2O4:Mn Phosphor Particles with Spherical Shape and Clean Surface , 2002 .

[50]  Mu-Rong Yang,et al.  A study of ZnGa2O4 phosphor prepared by the solid method , 1998 .

[51]  H. Takizawa,et al.  Synthesis and long-period phosphorescence of ZnGa2O4:Mn2+ spinel , 1997 .

[52]  Hiroyuki Yamada,et al.  ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices , 1997 .

[53]  Huimin Liu,et al.  Photoluminescence of Mn2+‐Doped ZnGa2 O 4 Single‐Crystal Fibers , 1995 .

[54]  C. Yu,et al.  Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering , 1994 .

[55]  F. Michel-calendini,et al.  New results on optical properties and term-energy calculations in Cr3+-doped ZnAl2O4 , 1990 .

[56]  D. Clark,et al.  Determination of combined water in glasses by infrared spectroscopy , 1990 .

[57]  J. P. Remeika,et al.  Luminescence from β-Ga2O3: Cr3+ , 1988 .

[58]  W. Mikenda,et al.  N-lines in the luminescence spectra of Cr3+-doped spinels: IV. Excitation spectra , 1983 .

[59]  A. Preisinger,et al.  N-lines in the luminescence spectra of Cr3+ -doped spinels (II) origins of N-lines , 1981 .

[60]  R. J. Hill,et al.  Systematics of the spinel structure type , 1979 .

[61]  J. H. Haanstra,et al.  Infrared and Raman spectra of the spinel ZnGa2O4 , 1973 .

[62]  J. Henning,et al.  Optical Spectra ofCr3+Pairs in the Spinel ZnGa2O4 , 1973 .

[63]  R. Macfarlane,et al.  Optical and Microwave Spectra of Cr3+ in the Spinel ZnGa2O4 , 1971 .

[64]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[65]  D. Shen,et al.  Materials development and potential applications of transparent ceramics: A review , 2020 .

[66]  F. Fang,et al.  Microstructure , 2019, CIRP Encyclopedia of Production Engineering.

[67]  Vincent Couderc,et al.  A Comprehensive Study of the Carbon Contamination in Tellurite Glasses and Glass‐Ceramics Sintered by Spark Plasma Sintering (SPS) , 2014 .

[68]  G. Fantozzi,et al.  Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders , 2012 .

[69]  Zhengwei Pan,et al.  Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. , 2011, Nature materials.

[70]  T. Goto,et al.  Highly transparent lutetium titanium oxide produced by spark plasma sintering , 2011 .

[71]  Feng Liu,et al.  Red, Green, and Blue Luminescence from ZnGa2O4 Nanowire Arrays , 2010 .

[72]  A. Crewe Microprobe analysis , 1976, Nature.