Smooth Two-Dimensional Interpolations: A Recipe for All Polygons

This paper presents a method for constructing smooth and bounded interpolations on any polygon, whether convex or concave in shape, or even one containing holes or isolated points in its interior. The resulting two-dimensional function distributes the value at any given vertex or internal node over the remaining portion of the domain. The representation depends only on simple geometrical properties such as lengths and areas. Accordingly, it is invariant with respect to any chosen coordinate system. The resulting set of interpolations is smooth within the domain. Within a triangle, the behavior is akin to a linear color gradient. If necessary, linear boundary behavior can also be assured. A Java implementation is available online.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  A. Meyers Reading , 1999, Language Teaching.

[3]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[4]  Elisabeth Anna Malsch,et al.  Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .

[5]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[6]  Christian Gout,et al.  Ck surface approximation from surface patches , 2002 .

[7]  Joe D. Warren,et al.  Barycentric coordinates for convex polytopes , 1996, Adv. Comput. Math..

[8]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[9]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[10]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[11]  Mohamed Rachid Laydi,et al.  Eléments finis polygonaux de Wachspress de degré quelconque , 1995 .

[12]  Vadim Shapiro,et al.  On completeness of RFM solution structures , 2000 .

[13]  Elisabeth Anna Malsch,et al.  Shape functions for polygonal domains with interior nodes , 2004 .

[14]  Gautam Dasgupta,et al.  Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .

[15]  Mark de Berg,et al.  Computational Geometry: Algorithms and Applications, Second Edition , 2000 .

[16]  Sudhir P. Mudur,et al.  Mathematical Elements for Computer Graphics , 1985, Advances in Computer Graphics.

[17]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..