Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper

[1]  F. Raymo,et al.  Saving paper with switchable ink , 2014 .

[2]  Wei Huang,et al.  Smart responsive phosphorescent materials for data recording and security protection , 2014, Nature Communications.

[3]  S. Kim,et al.  Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study. , 2014, Biomedical chromatography : BMC.

[4]  Miaomiao Ye,et al.  Nanocrystalline TiO₂-catalyzed photoreversible color switching. , 2014, Nano letters.

[5]  Lan Sheng,et al.  Hydrochromic molecular switches for water-jet rewritable paper , 2014, Nature Communications.

[6]  Hok-Lai Wong,et al.  Tunable photochromism in air-stable, robust dithienylethene-containing phospholes through modifications at the phosphorus center. , 2013, Angewandte Chemie.

[7]  Jong-Man Kim,et al.  A protective layer approach to solvatochromic sensors , 2013, Nature Communications.

[8]  He Tian,et al.  Photochromic Materials: More Than Meets The Eye , 2013, Advanced materials.

[9]  Xiujian Zhao,et al.  Polymeric adsorption of methylene blue in TiO2 colloids-highly sensitive thermochromism and selective photocatalysis. , 2012, Chemistry.

[10]  H. Tian,et al.  Light-triggered reversible supramolecular transformations of multi-bisthienylethene hexagons. , 2012, Journal of the American Chemical Society.

[11]  A. Urbas,et al.  Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure. , 2012, Journal of the American Chemical Society.

[12]  Xiong Gong,et al.  Organic photoresponse materials and devices. , 2012, Chemical Society reviews.

[13]  David Levy,et al.  Photochromic organic-inorganic hybrid materials. , 2011, Chemical Society reviews.

[14]  K. Ishida,et al.  Reversible multi-coloring reaction of spironaphtooxazine controlled by long-chain molecule , 2010 .

[15]  Le He,et al.  Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink , 2009 .

[16]  Bartosz A. Grzybowski,et al.  Innentitelbild: Writing Self-Erasing Images using Metastable Nanoparticle “Inks” (Angew. Chem. 38/2009) , 2009 .

[17]  Y. Kohno,et al.  Simple full-color rewritable film with photochromic fulgide derivatives , 2009 .

[18]  Y. Galagan,et al.  Reversible photoreduction of methylene blue in acrylate media containing benzyl dimethyl ketal , 2008 .

[19]  W. Wirth,et al.  More than meets the eye , 2007 .

[20]  M. Wainwright,et al.  Phenothiazinium-based photobactericidal materials. , 2006, Journal of photochemistry and photobiology. B, Biology.

[21]  Takuzo Aida,et al.  Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events , 2005, Nature materials.

[22]  Andrew Mills,et al.  Novel UV-activated colorimetric oxygen indicator , 2005 .

[23]  T. Hanley,et al.  The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix , 2005, Nature materials.

[24]  S. Hirano,et al.  A photon‐mode full‐color rewritable image using photochromic compounds , 2004 .

[25]  B. J. Feenstra,et al.  Video-speed electronic paper based on electrowetting , 2003, Nature.

[26]  Younan Xia,et al.  Photonic Papers and Inks: Color Writing with Colorless Materials , 2003 .

[27]  Akira Fujishima,et al.  Multicolour photochromism of TiO2 films loaded with silver nanoparticles , 2003, Nature materials.

[28]  Heather Sarantis,et al.  Business guide to paper reduction , 2002 .

[29]  B. Lauterburg,et al.  Pharmacokinetics and organ distribution of intravenous and oral methylene blue , 2000, European Journal of Clinical Pharmacology.

[30]  L. Firbank,et al.  An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation , 1999 .

[31]  J. Jacobson,et al.  An electrophoretic ink for all-printed reflective electronic displays , 1998, Nature.

[32]  H. Gaze More than meets the eye. , 1991, Nursing times.