IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL

A probabilistic model is proposed to simulate the growth of fatigue damage in an austenitic stainless steel at a mesoscopic scale. Several fatigue mechanical tests were performed to detect and quantify mesocrack initiations for different loadings by using digital image correlation. The number of initiated mesocracks is experimentally determined. The process is then described by a Poisson point process. The intensity of the process is evaluated by using a multi-scale approach based on a probabilistic crack initiation law in a typical grain.

[1]  S. Roux,et al.  “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands , 2006 .

[2]  C. Déprés Modélisation physique des stades précurseurs de l'endommagement en fatigue dans l'acier inoxydable austénitique 316L , 2004 .

[3]  E. Ferrié,et al.  Physically-based modeling of the cyclic macroscopic behaviour of metals , 2010 .

[4]  J. Polák,et al.  LOW CYCLE FATIGUE DAMAGE ACCUMULATION IN ARMCO-IRON , 1991 .

[5]  H. Mughrabi,et al.  Fatigue Crack Initiation by Cyclic Slip Irreversibilities in High-Cycle Fatigue , 1983 .

[6]  Rodrigue Desmorat,et al.  Two scale damage model and related numerical issues for thermo-mechanical High Cycle Fatigue , 2007 .

[7]  M. Sauzay,et al.  Prediction of the Scatter of Crack Initiation under High Cycle Fatigue , 2007 .

[8]  A. Fatemi,et al.  Fatigue Behavior of Stainless Steel 304L Including Strain Hardening, Prestraining, and Mean Stress Effects , 2010 .

[9]  S. Roux,et al.  Stress Intensity Factor Gauging by Digital Image Correlation: Application in Cyclic Fatigue , 2007 .

[10]  Angus J. Wilkinson,et al.  A crystallographic mechanism for fatigue crack propagation through grain boundaries , 2000 .

[11]  Jaroslav Polák,et al.  Short crack growth and fatigue life in austenitic‐ferritic duplex stainless steel , 2005 .

[12]  A. Bataille,et al.  Surface damage accumulation in low-cycle fatigue: Physical analysis and numerical modelling , 1994 .

[13]  T. Magnin,et al.  A quantitative approach to fatigue damage evolution in FCC and BCC stainless steels , 1985 .

[14]  James Alfred Ewing,et al.  The fracture of metals under repeated alternations of stress , 1903, Proceedings of the Royal Society of London.

[15]  K. Obrtlík,et al.  Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel , 2002 .

[16]  U. Lindborg A statistical model for the linking of microcracks , 1969 .

[17]  Valérie Maillot Amorçage et propagation de réseaux de fissures de fatigue thermique dans un acier inoxydable austénitique de type X2 CrNi18-09 (AISI 304 L) , 2003 .

[18]  Darrell F. Socie,et al.  Crack nucleation and growth modeling in biaxial fatigue , 1988 .

[19]  François Hild,et al.  A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue , 2009 .

[20]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[21]  Suzanne Degallaix,et al.  Fatigue damage analysis in a duplex stainless steel by digital image correlation technique , 2008 .

[22]  Darrell F. Socie,et al.  FATIGUE DAMAGE IN 1045 STEEL UNDER CONSTANT AMPLITUDE BIAXIAL LOADING , 1984 .

[23]  François Hild,et al.  A probabilistic two-scale model for high-cycle fatigue life predictions , 2005 .

[24]  Stéphan Courtin,et al.  Biaxial High Cycle Fatigue of a type 304L stainless steel: Cyclic strains and crack initiation detection by digital image correlation , 2010 .

[25]  M. Fivel,et al.  Low-strain fatigue in 316L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: Persistent slip markings and micro-crack nucleation , 2006 .

[26]  B. Fedelich A stochastic theory for the problem of multiple surface crack coalescence , 1998 .

[27]  Endommagement en viscoplasticite cyclique sous chargement multiaxial a haute temperature d'un acier inoxydable austenitique , 1992 .

[28]  Toshio Mura,et al.  A Theory of Fatigue Crack Initiation , 1994 .

[29]  Fatigue crack initiation and crystallographic crack growth in an austenitic stainless steel , 2000 .

[30]  François Hild,et al.  A probabilistic approach for fragmentation of brittle materials under dynamic loading , 1997 .

[31]  Nicolas Malesys Modélisation probabiliste de formation de réseaux de fissures de fatigue thermique , 2007 .

[32]  Fatigue and Creep-Fatigue Damage of Austenitic Stainless Steels under Multiaxial Loading , 1993 .