The Role of Surface-Wave Breaking in Air-Sea Interaction

Breaking serves to limit the height of surface waves, mix the surface waters, generate ocean currents, and enhance air-sea fluxes of heat, mass, and momentum through the generation of turbulence and the entrainment of air. Breaking may result from intrinsic instabilities of deep-water waves or through wavewave, wave-current, and wind-wave interactions. Observations in the field are made difficult by the fact that breaking is a strongly nonlinear intermittent process occurring over a wide range of scales. Controlled laboratory studies of breaking have proven useful in measuring the scaling relationships between the surface wave field and the kinematics and dynamics of breaking. Our inability to predict the occurrence and dynamics of breaking is a major impediment to the development of better wind-wave and mixed-layer models. Modern acoustic and electromagnetic oceanographic instrumentation should lead to significantly improved measurements of breaking in the near future.

[1]  W. Pierson,et al.  A proposed spectral form for fully developed wind seas based on the similarity theory of S , 1964 .

[2]  David M. Farmer,et al.  An Evaluation of the WOTAN Technique of Inferring Oceanic Winds from Underwater Ambient Sound , 1990 .

[3]  Mark R. Loewen,et al.  Microwave backscatter and acoustic radiation from breaking waves , 1991, Journal of Fluid Mechanics.

[4]  R. Kennedy Acoustic radiation due to surface wave breaking. , 1992 .

[5]  D. Woolf,et al.  Bubbles and the air-sea exchange of gases in near-saturation conditions , 1991 .

[6]  T. Leighton The Acoustic Bubble , 1994 .

[7]  A. Osborne,et al.  Internal Solitons in the Andaman Sea , 1980, Science.

[8]  Eric Lamarre,et al.  Void-fraction measurements and sound-speed fields in bubble plumes generated by breaking waves , 1994 .

[9]  R. Keeling On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean , 1993 .

[10]  Albert J. Williams,et al.  Estimates of Kinetic Energy Dissipation under Breaking Waves , 1996 .

[11]  G. Batchelor Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity , 1959, Journal of Fluid Mechanics.

[12]  Omar H. Shemdin,et al.  LABORATORY MEASUREMENTS OF MODULATION OF SHORT-WAVE SLOPES BY LONG SURFACE WAVES , 1991 .

[13]  M. Longuet-Higgins Mechanisms of Wave Breaking in Deep Water , 1988 .

[14]  D. Rockwell,et al.  Instantaneous structure of a breaking wave , 1994 .

[15]  S. A. Thorpe,et al.  Bubbles and breaking waves , 1980, Nature.

[16]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[17]  S. Kitaigorodskii,et al.  Wave-Turbulence Interactions in the Upper Ocean. Part II. Statistical Characteristics of Wave and Turbulent Components of the Random Velocity Field in the Marine Surface Layer , 1983 .

[18]  H. Mitsuyasu,et al.  A note on the momentum transfer from wind to waves , 1985 .

[19]  W. Plant A relationship between wind stress and wave slope , 1982 .

[20]  W. Melville,et al.  On the stability of weakly nonlinear short waves on finite-amplitude long gravity waves , 1992, Journal of Fluid Mechanics.

[21]  Sea surface sound : natural mechanisms of surface generated noise in the ocean , 1988 .

[22]  Leo H. Holthuijsen,et al.  Statistics of Breaking Waves Observed as Whitecaps in the Open Sea , 1986 .

[23]  S. Kitaigorodskii,et al.  On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves , 1983 .

[24]  James H. Duncan,et al.  The formation of spilling breaking water waves , 1994 .

[25]  O. Phillips The dynamics of the upper ocean , 1966 .

[26]  M. Longuet-Higgins,et al.  Sea Waves and Microseisms , 1948, Nature.

[27]  Herman Medwin,et al.  Bubble sources of the Knudsen sea noise spectra , 1989 .

[28]  E. H. Fooks,et al.  On the microwave reflectivity of small-scale breaking water waves , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  M. Miche Mouvements ondulatoires de la mer en profondeur constante ou décroissante , 1944 .

[30]  S. A. Thorpe Energy Loss by Breaking waves , 1993 .

[31]  M. Longuet-Higgins,et al.  Changes in the form of short gravity waves on long waves and tidal currents , 1960, Journal of Fluid Mechanics.

[32]  Owen M. Phillips,et al.  The dispersion of short wavelets in the presence of a dominant long wave , 1981, Journal of Fluid Mechanics.

[33]  O. Phillips Spectral and statistical properties of the equilibrium range in wind-generated gravity waves , 1985, Journal of Fluid Mechanics.

[34]  W. Kendall Melville,et al.  Correlations between Ambient Noise and the Ocean Surface Wave Field , 1995 .

[35]  Andrew T. Jessup,et al.  Acoustic and microwave signatures of breaking waves , 1988, Nature.

[36]  W. Melville The Role of Wave Breaking in Air-Sea Interaction , 1993 .

[37]  O. M. Phillips,et al.  Radar Returns from the Sea Surface—Bragg Scattering and Breaking Waves , 1988 .

[38]  Robert M. Kennedy Sea surface dipole sound source dependence on wave‐breaking variables , 1992 .

[39]  A Laboratory Technique for Investigating the Relationship between Gas Transfer and Fluid Turbulence , 1984 .

[40]  J. Miles On the generation of surface waves by shear flows , 1957, Journal of Fluid Mechanics.

[41]  R. Long,et al.  Array measurements of atmospheric pressure fluctuations above surface gravity waves , 1981, Journal of Fluid Mechanics.

[42]  W. K. Melville,et al.  Wave modulation and breakdown , 1983, Journal of Fluid Mechanics.

[43]  M. Tulin,et al.  A theory of steady breakers , 1994, Journal of Fluid Mechanics.

[44]  K. Hasselmann On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory , 1962, Journal of Fluid Mechanics.

[45]  Robert Pinkel,et al.  Open ocean surface wave measurement using Doppler sonar , 1987 .

[46]  Mark R. Loewen,et al.  A model of the sound generated by breaking waves , 1991 .

[47]  W. Melville,et al.  Laboratory measurements of deep-water breaking waves , 1990, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[48]  D. Wallace,et al.  Large air–sea gas fluxes associated with breaking waves , 1992, Nature.

[49]  K. Katsaros,et al.  Detection of Breaking Events in a Wind-Generated Wave Field , 1984 .

[50]  Henry C. Yuen,et al.  Three-Dimensional Instability of Finite-Amplitude Water Waves , 1981 .

[51]  William J. Plant,et al.  Observation of Breaking Ocean Waves with Coherent Microwave Radar , 1986 .

[52]  M. Donelan,et al.  Dynamics and Modelling of Ocean Waves , 1994 .

[53]  Andrea Prosperetti,et al.  Bubble Dynamics in Oceanic Ambient Noise , 1988 .

[54]  E. J. Hopfinger,et al.  Spatially decaying turbulence and its relation to mixing across density interfaces , 1976, Journal of Fluid Mechanics.

[55]  M. Longuet-Higgins,et al.  Parasitic capillary waves: a direct calculation , 1995, Journal of Fluid Mechanics.

[56]  Li Ding,et al.  Observations of Breaking Surface Wave Statistics , 1994 .

[57]  Y. Toba,et al.  Field data support of three-seconds power law andgu*σ−4-spectral form for growing wind waves , 1977 .

[58]  B. Jähne New Experimental Results on the Parameters Influencing Air-Sea Gas Exchange , 1991 .

[59]  M. J. Lighthill,et al.  Contributions to the Theory of Waves in Non-linear Dispersive Systems , 1965 .

[60]  M. Longuet-Higgins Shear instability in spilling breakers , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[61]  S. Kitaigorodskii On the Fluid Dynamical Theory of Turbulent Gas Transfer Across an Air-Sea Interface in the Presence of Breaking Wind-Waves , 1984 .

[62]  D. Farmer,et al.  Evidence for the importance of bubbles in increasing air–sea gas flux , 1993, Nature.

[63]  L. Merlivat,et al.  Gas exchange across an air‐water interface: Experimental results and modeling of bubble contribution to transfer , 1983 .

[64]  John W. Miles,et al.  Surface-wave generation revisited , 1993, Journal of Fluid Mechanics.

[65]  M. Longuet-Higgins,et al.  Radiation stresses in water waves; a physical discussion, with applications , 1964 .

[66]  P. Bonmarin,et al.  Geometric properties of deep-water breaking waves , 1989, Journal of Fluid Mechanics.

[67]  John Trinder,et al.  Wavenumber spectra of short gravity waves , 1989, Journal of Fluid Mechanics.

[68]  K. Hasselmann,et al.  On the Existence of a Fully Developed Wind-Sea Spectrum , 1984 .

[69]  S. A. Thorpe,et al.  Small-scale processes in the upper ocean boundary layer , 1985, Nature.

[70]  Robert L. Miller Role of Vortices in Surf Zone Prediction: Sedimentation and Wave Forces , 1987 .

[71]  S. A. Thorpe,et al.  The characteristics of breaking waves, bubble clouds, and near-surface currents observed using side-scan sonar , 1983 .

[72]  D. Farmer,et al.  On the dipole acoustic source level of breaking waves , 1994 .

[73]  M. Longuet-Higgins,et al.  The propagation of short surface waves on longer gravity waves , 1987, Journal of Fluid Mechanics.

[74]  S. A. Thorpe,et al.  Dynamical processes of transfer at the sea surface , 1995 .

[75]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[76]  W. K. Melville,et al.  Evolution of weakly nonlinear short waves riding on long gravity waves , 1990 .

[77]  É. Lamarre An Experimental Study of Air Entrainment by Breaking Waves. , 1993 .

[78]  V. Philomin,et al.  The Formation of a Spilling Breaker , 1994 .

[79]  J. A. Elliott,et al.  Dissipation Within the Surface Mixed Layer , 1982 .

[80]  W. Kendall Melville,et al.  Energy Dissipation by Breaking Waves , 1994 .

[81]  Donald S. Scott,et al.  An eddy cell model of mass transfer into the surface of a turbulent liquid , 1970 .

[82]  David M. Farmer,et al.  The Measurement of Bubble-Size Distributions by Acoustical Backscatter , 1992 .

[83]  M. Minnaert XVI.On musical air-bubbles and the sounds of running water , 1933 .

[84]  M. Banner,et al.  Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer , 1994 .

[85]  John W. Dold,et al.  Water-Wave Modulation , 1986 .

[86]  Yoshiaki Toba,et al.  Local balance in the air-sea boundary processes , 1973 .

[87]  Jiezhi Wu,et al.  A theory of three‐dimensional interfacial vorticity dynamics , 1995 .

[88]  Bryan R. Kerman Sea Surface Sound , 1988 .

[89]  A. Watson,et al.  Air–sea gas exchange in rough and stormy seas measured by a dual-tracer technique , 1991, Nature.

[90]  W. Melville,et al.  The surface velocity field in steep and breaking waves , 1988, Journal of Fluid Mechanics.

[91]  Ming-Yang Su,et al.  Experiments on nonlinear instabilities and evolution of steep gravity-wave trains , 1982, Journal of Fluid Mechanics.

[92]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water ll. Growth of normal-mode instabilities , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[93]  Andrew T. Jessup,et al.  Measurements of sea spikes in microwave backscatter at moderate incidence , 1990 .

[94]  James H. Duncan,et al.  The breaking and non-breaking wave resistance of a two-dimensional hydrofoil , 1983, Journal of Fluid Mechanics.

[95]  W. Melville,et al.  Momentum flux in breaking waves , 1985, Nature.

[96]  R. P. Cleaver,et al.  Crest instabilities of gravity waves. Part 1. The almost-highest wave , 1994, Journal of Fluid Mechanics.

[97]  M. Longuet-Higgins,et al.  Periodicity in Whitecaps , 1972, Nature.

[98]  Stewart W. Turner,et al.  The flow field downstream of a hydraulic jump , 1995, Journal of Fluid Mechanics.