A Predictive Approach to Tail Probability Estimation
暂无分享,去创建一个
K. F. Turkman | P. Bermudez | K. Turkman | M. A. Turkman | P. de Zea Bermudez | M. A. Amaral Turkman | P. de Zea Bermudez
[1] Rong Chen,et al. Ozone Exposure and Population Density in Harris County, Texas , 1997 .
[2] W. DuMouchel. Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .
[3] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[4] M. Ivette Gomes,et al. Penultimate limiting forms in extreme value theory , 1984 .
[5] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[6] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[7] Laurens de Haan,et al. Fighting the arch–enemy with mathematics‘ , 1990 .
[8] A. M. Hasofer,et al. A Test for Extreme Value Domain of Attraction , 1992 .
[9] Richard L. Smith,et al. Models for exceedances over high thresholds , 1990 .
[10] Jonathan P. Cohen. The penultimate form of approximation to normal extremes , 1982, Advances in Applied Probability.
[11] J. Teugels,et al. Practical Analysis of Extreme Values , 1996 .
[12] R. Hughey,et al. A survey and comparison of methods for estimating extreme right tail-area quantiles , 1991 .
[13] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .