Simulations of deuterium-tritium experiments in TFTR

A transport code (TRANSP) is used to simulate future deuterium-tritium (DT) experiments in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modelling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modelling. Fusion energy yields and alpha particle parameters are calculated, including profiles of the alpha slowing down time, the alpha average energy, and the Alfven speed and frequency. Two types of simulation are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D0 in the neutral beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that alpha heating will enhance the plasma parameters or that confinement will increase with the addition of tritium. The maximum relative fusion yield calculated for these simulations is QDT ~ 0.3, and the maximum alpha contribution to the central toroidal β is βα(0) ~ 0.5%. The stability of toroidicity induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed

[1]  Liu Chen,et al.  On resonant destabilization of toroidal Alfvén eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks , 1992 .

[2]  Chen,et al.  Unified theory of resonant excitation of kinetic ballooning modes by energetic ions and alpha particles in tokamaks. , 1991, Physical review letters.

[3]  J. Cordey,et al.  Extrapolation of the high-performance JET plasmas to D-T operation , 1991 .

[4]  Chio Cheng,et al.  Alpha particle destabilization of the toroidicity-induced Alfvén eigenmodes , 1991 .

[5]  C. Barnes,et al.  High- Q plasmas in the TFTR tokamak , 1991 .

[6]  R. Budny Deuterium recycling, confinement and limiter flux in TFTR , 1990 .

[7]  A. Gibson Fusion relevant performance in JET , 1990 .

[8]  A. Roquemore,et al.  TFTR multichannel neutron collimator , 1990 .

[9]  D. McCune,et al.  Parallel electric resistivity in the TFTR tokamak , 1990 .

[10]  C. Barnes,et al.  In situ calibration of TFTR neutron detectors , 1990 .

[11]  H. K. Park,et al.  A new asymmetric Abel-inversion method for plasma interferometry in tokamaks , 1989 .

[12]  R. Rocco,et al.  Broadband measurement of electron cyclotron emission in TFTR using a quasioptical light collection system and a polarizing Michelson interferometer , 1988 .

[13]  J. Johnson,et al.  MHD stability properties of a high current, high beta tokamak , 1988 .

[14]  J. Rice,et al.  Measurements of the ion temperature and plasma rotation from Kα emission with the TFTR horizontal x‐ray crystal spectrometer , 1988 .

[15]  S. Zweben,et al.  Alpha storage regime in high temperature sub-ignited D-T tokamaks , 1988 .

[16]  A. Cavallo,et al.  Twenty-channel grating polychromator for millimeter wave plasma emission measurements , 1988 .

[17]  Bell,et al.  Bootstrap current in TFTR. , 1988, Physical review letters.

[18]  Davis,et al.  High-temperature plasmas in a tokamak fusion test reactor. , 1987, Physical review letters.

[19]  N. Sauthoff,et al.  Studies of impurity behaviour in TFTR , 1986 .

[20]  D. Johnson,et al.  TFTR edge Thomson scattering system , 1986 .

[21]  V. Paré,et al.  TFTR vertical x-ray imaging system , 1986 .

[22]  B. Grek,et al.  Multichannel Thomson scattering systems with high spatial resolution (invited) , 1986 .

[23]  N. Sauthoff,et al.  Tokamak Fusion Test Reactor x‐ray imaging diagnostic , 1985 .

[24]  P. Efthimion,et al.  Fast scanning heterodyne receiver for the measurement of the time evolution of the electron temperature profile on the Tokamak Fusion Test Reactor , 1984 .

[25]  A. T. Ramsey,et al.  Multichannel grazing-incidence spectrometer for plasma impurity diagnosis: SPRED. , 1982, Applied optics.

[26]  J. Manickam,et al.  Ideal MHD stability calculations in axisymmetric toroidal coordinate systems , 1982 .

[27]  S. Jardin,et al.  An iterative metric method for solving the inverse tokamak equilibrium problem , 1979 .

[28]  G. Bateman,et al.  Tokamak fusion test reactor central ignition scenarios , 1988 .

[29]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .