Gate Set Tomography

Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST's intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation.

[1]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[2]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[3]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[4]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[5]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[6]  Zdenek Hradil,et al.  Self-calibration for self-consistent tomography , 2012 .

[7]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[8]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[9]  Zach DeVito,et al.  Opt , 2017 .

[10]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[11]  Erik Nielsen,et al.  Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. , 2014, Nature nanotechnology.

[12]  T. M. Stace,et al.  Experimental quantum verification in the presence of temporally correlated noise , 2017, 1706.03787.

[13]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[14]  Junan Lin,et al.  On the freedom in representing quantum operations , 2018, New Journal of Physics.

[15]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[16]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[17]  R. Blume-Kohout,et al.  Detecting crosstalk errors in quantum information processors , 2019, Quantum.

[18]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[19]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[20]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[21]  Physikalische Gesellschaft in der Deutschen Demokratischen Republik Fortschritte der Physik = Progress of physics , 1953 .

[22]  T. Heinosaari,et al.  Quantum Tomography under Prior Information , 2011, 1109.5478.

[23]  Steven T. Flammia,et al.  Stochastic estimation of dynamical variables , 2018, Quantum Science and Technology.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Lee A. Rozema,et al.  Self-calibrating quantum state tomography , 2011, Frontiers in Optics 2011/Laser Science XXVII.

[26]  H. Ng,et al.  Optimal error regions for quantum state estimation , 2013, 1302.4081.

[27]  K. Życzkowski,et al.  Pauli semigroups and unistochastic quantum channels , 2019, Physics Letters A.

[28]  Scott Aaronson,et al.  Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..

[29]  E. LESTER SMITH,et al.  AND OTHERS , 2005 .

[30]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[31]  Lian-Ao Wu,et al.  Decoherence and control of a qubit in spin baths: an exact master equation study , 2018, Scientific Reports.

[32]  R. Blume-Kohout,et al.  Probing quantum processor performance with pyGSTi , 2020, Quantum Science and Technology.

[33]  Pieter Lagrou States , 2019, Europe’s Postwar Periods 1989, 1945, 1918.

[34]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[35]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[36]  Erik Nielsen,et al.  Optimization of a solid-state electron spin qubit using gate set tomography , 2016, 1606.02856.

[37]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[38]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[39]  N. Wiebe,et al.  Operational, gauge-free quantum tomography , 2020, Quantum.

[40]  Thomas Alexander,et al.  QInfer: Statistical inference software for quantum applications , 2016, 1610.00336.

[41]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[42]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[43]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[44]  Thomas Lippert,et al.  Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..

[45]  P. Alam ‘K’ , 2021, Composites Engineering.

[46]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[47]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[48]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[49]  Erik Nielsen,et al.  Detecting and tracking drift in quantum information processors , 2020, Nature communications.

[50]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[51]  Steven T. Flammia,et al.  Estimating the fidelity of T gates using standard interleaved randomized benchmarking , 2016, 1608.02943.

[52]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[53]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[54]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[55]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[56]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[57]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[58]  Joel J. Wallman,et al.  Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.

[59]  Barbara M. Terhal,et al.  Spectral quantum tomography , 2019, npj Quantum Information.

[60]  Lukasz Rudnicki,et al.  Gauge invariant information concerning quantum channels , 2017, 1707.06926.

[61]  Wei Teufelsdreck,et al.  Chin , 2021, COMARCA PERDIDA.

[62]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[63]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[64]  Christopher Ferrie,et al.  High posterior density ellipsoids of quantum states , 2013, 1310.1903.

[65]  Dong-Ling Deng,et al.  Hamiltonian tomography for quantum many-body systems with arbitrary couplings , 2015, 1505.00665.

[66]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[67]  Christopher Ferrie,et al.  How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies , 2013, Quantum Inf. Process..

[68]  Robin Blume-Kohout,et al.  A volumetric framework for quantum computer benchmarks , 2019, Quantum.

[69]  D. Gross,et al.  Focus on quantum tomography , 2013 .

[70]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[71]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[72]  J. Eisert,et al.  Measuring measurement , 2008, 0807.2444.

[73]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[74]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[75]  Patrick J. Coles,et al.  Machine Learning of Noise-Resilient Quantum Circuits , 2020, PRX Quantum.

[76]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[77]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[78]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[79]  Travis L. Scholten,et al.  Behavior of the maximum likelihood in quantum state tomography , 2016, 1609.04385.

[80]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[81]  J. Cole Hamiltonian tomography: the quantum (system) measurement problem , 2015 .

[82]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[83]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[84]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[85]  A. Varon,et al.  A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.

[86]  L. Artiles,et al.  An invitation to quantum tomography , 2003, quant-ph/0303020.

[87]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[88]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[89]  M. N. Makhonin,et al.  Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.

[90]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[91]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[92]  March,et al.  Quantum Volume , 2017 .

[93]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[94]  W. Marsden I and J , 2012 .

[95]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .