Gate Set Tomography
暂无分享,去创建一个
Erik Nielsen | Kenneth Rudinger | Robin Blume-Kohout | John King Gamble | Travis L. Scholten | Travis Scholten | Kevin Young | R. Blume-Kohout | E. Nielsen | J. Gamble | K. Rudinger | Kevin Young | Kevin C. Young
[1] Jacob M. Taylor,et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.
[2] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[3] Vogel,et al. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.
[4] P. Alam. ‘T’ , 2021, Composites Engineering: An A–Z Guide.
[5] A. J. Scott. Tight informationally complete quantum measurements , 2006, quant-ph/0604049.
[6] Zdenek Hradil,et al. Self-calibration for self-consistent tomography , 2012 .
[7] J. D. Wong-Campos,et al. Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.
[8] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[9] Zach DeVito,et al. Opt , 2017 .
[10] Peter Maunz,et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.
[11] Erik Nielsen,et al. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. , 2014, Nature nanotechnology.
[12] T. M. Stace,et al. Experimental quantum verification in the presence of temporally correlated noise , 2017, 1706.03787.
[13] Andrew S. Dzurak,et al. Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.
[14] Junan Lin,et al. On the freedom in representing quantum operations , 2018, New Journal of Physics.
[15] Isaac L. Chuang,et al. Prescription for experimental determination of the dynamics of a quantum black box , 1997 .
[16] S. Debnath,et al. Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.
[17] R. Blume-Kohout,et al. Detecting crosstalk errors in quantum information processors , 2019, Quantum.
[18] Barry C Sanders,et al. Complete Characterization of Quantum-Optical Processes , 2008, Science.
[19] Ying Li,et al. Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.
[20] Christopher Granade,et al. Practical Bayesian tomography , 2015, 1509.03770.
[21] Physikalische Gesellschaft in der Deutschen Demokratischen Republik. Fortschritte der Physik = Progress of physics , 1953 .
[22] T. Heinosaari,et al. Quantum Tomography under Prior Information , 2011, 1109.5478.
[23] Steven T. Flammia,et al. Stochastic estimation of dynamical variables , 2018, Quantum Science and Technology.
[24] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[25] Lee A. Rozema,et al. Self-calibrating quantum state tomography , 2011, Frontiers in Optics 2011/Laser Science XXVII.
[26] H. Ng,et al. Optimal error regions for quantum state estimation , 2013, 1302.4081.
[27] K. Życzkowski,et al. Pauli semigroups and unistochastic quantum channels , 2019, Physics Letters A.
[28] Scott Aaronson,et al. Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..
[29] E. LESTER SMITH,et al. AND OTHERS , 2005 .
[30] Tsuyoshi Murata,et al. {m , 1934, ACML.
[31] Lian-Ao Wu,et al. Decoherence and control of a qubit in spin baths: an exact master equation study , 2018, Scientific Reports.
[32] R. Blume-Kohout,et al. Probing quantum processor performance with pyGSTi , 2020, Quantum Science and Technology.
[33] Pieter Lagrou. States , 2019, Europe’s Postwar Periods 1989, 1945, 1918.
[34] Dmitri Maslov,et al. Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.
[35] E. Knill. Quantum computing with realistically noisy devices , 2005, Nature.
[36] Erik Nielsen,et al. Optimization of a solid-state electron spin qubit using gate set tomography , 2016, 1606.02856.
[37] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[38] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .
[39] N. Wiebe,et al. Operational, gauge-free quantum tomography , 2020, Quantum.
[40] Thomas Alexander,et al. QInfer: Statistical inference software for quantum applications , 2016, 1610.00336.
[41] Yaliang Li,et al. SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.
[42] H Neven,et al. A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.
[43] B. Efron. Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .
[44] Thomas Lippert,et al. Benchmarking gate-based quantum computers , 2017, Comput. Phys. Commun..
[45] P. Alam. ‘K’ , 2021, Composites Engineering.
[46] Raymond Laflamme,et al. Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.
[47] Steven T. Flammia,et al. Estimating the coherence of noise , 2015, 1503.07865.
[48] Yao Lu,et al. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.
[49] Erik Nielsen,et al. Detecting and tracking drift in quantum information processors , 2020, Nature communications.
[50] Steven T. Flammia,et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.
[51] Steven T. Flammia,et al. Estimating the fidelity of T gates using standard interleaved randomized benchmarking , 2016, 1608.02943.
[52] J. Rarity,et al. Experimental quantum Hamiltonian learning , 2017, Nature Physics.
[53] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[54] 友紀子 中川. SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.
[55] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[56] L. DiCarlo,et al. Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.
[57] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[58] Joel J. Wallman,et al. Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.
[59] Barbara M. Terhal,et al. Spectral quantum tomography , 2019, npj Quantum Information.
[60] Lukasz Rudnicki,et al. Gauge invariant information concerning quantum channels , 2017, 1707.06926.
[61] Wei Teufelsdreck,et al. Chin , 2021, COMARCA PERDIDA.
[62] R. Kueng,et al. Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.
[63] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[64] Christopher Ferrie,et al. High posterior density ellipsoids of quantum states , 2013, 1310.1903.
[65] Dong-Ling Deng,et al. Hamiltonian tomography for quantum many-body systems with arbitrary couplings , 2015, 1505.00665.
[66] Travis S. Humble,et al. Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.
[67] Christopher Ferrie,et al. How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies , 2013, Quantum Inf. Process..
[68] Robin Blume-Kohout,et al. A volumetric framework for quantum computer benchmarks , 2019, Quantum.
[69] D. Gross,et al. Focus on quantum tomography , 2013 .
[70] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[71] Zhan Shi,et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.
[72] J. Eisert,et al. Measuring measurement , 2008, 0807.2444.
[73] Nathan Wiebe,et al. Robust online Hamiltonian learning , 2012, TQC.
[74] Rainer Blatt,et al. Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.
[75] Patrick J. Coles,et al. Machine Learning of Noise-Resilient Quantum Circuits , 2020, PRX Quantum.
[76] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[77] Joseph Emerson,et al. Robust characterization of leakage errors , 2016 .
[78] H. Neven,et al. Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.
[79] Travis L. Scholten,et al. Behavior of the maximum likelihood in quantum state tomography , 2016, 1609.04385.
[80] R. Blume-Kohout. Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.
[81] J. Cole. Hamiltonian tomography: the quantum (system) measurement problem , 2015 .
[82] Steven T. Flammia,et al. Randomized benchmarking with confidence , 2014, 1404.6025.
[83] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[84] Ericka Stricklin-Parker,et al. Ann , 2005 .
[85] A. Varon,et al. A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk , 2014, Nature Communications.
[86] L. Artiles,et al. An invitation to quantum tomography , 2003, quant-ph/0303020.
[87] Seth Lloyd,et al. Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.
[88] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[89] M. N. Makhonin,et al. Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.
[90] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[91] P. Alam. ‘Z’ , 2021, Composites Engineering: An A–Z Guide.
[92] March,et al. Quantum Volume , 2017 .
[93] Ny,et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.
[94] W. Marsden. I and J , 2012 .
[95] K. Kraus,et al. States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .