The mammalian central pattern generator for locomotion

[1]  P. Flourens Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés , 1842 .

[2]  C. Sherrington Flexion‐reflex of the limb, crossed extension‐reflex, and reflex stepping and standing , 1910, The Journal of physiology.

[3]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[4]  T. Brown On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system , 1914, The Journal of physiology.

[5]  G. M. Hughes,et al.  The Co-ordination of Swimmeret Movements in the Crayfish, Procambarus Clarkii (Girard) , 1960 .

[6]  F. Plum Handbook of Physiology. , 1960 .

[7]  T. Bullock THE ORIGINS OF PATTERNED NERVOUS DISCHARGE , 1961 .

[8]  R. Wyman,et al.  MOTOR OUTPUT PATTERNS DURING RANDOM AND RHYTHMIC STIMULATION OF LOCUST THORACIC GANGLIA. , 1965, Biophysical journal.

[9]  Shik Ml,et al.  Locomotion induced by stimulation of the mesencephalon , 1966 .

[10]  M. L. Shik,et al.  [Locomotion induced by stimulation of the mesencephalon]. , 1966, Doklady Akademii nauk SSSR.

[11]  E. Adrian,et al.  Thomas Graham Brown, 1882-1965 , 1966, Biographical Memoirs of Fellows of the Royal Society.

[12]  A. Lundberg,et al.  The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. , 1967, Acta physiologica Scandinavica.

[13]  A. Lundberg,et al.  The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. , 1967, Acta physiologica Scandinavica.

[14]  A. Lundberg,et al.  Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. , 1969, Brain research.

[15]  P. Buser,et al.  The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. , 1969, Brain research.

[16]  P. Stein Intersegmental coordination of swimmeret motoneuron activity in crayfish. , 1971, Journal of neurophysiology.

[17]  S. Grillner,et al.  The locomotion of the acute spinal cat injected with clonidine i.v. , 1973, Brain research.

[18]  K. Pearson,et al.  Control of Posture and Locomotion , 1973, Advances in Behavioral Biology.

[19]  V. S. Gurfinkel,et al.  The Control of Posture and Locomotion , 1973 .

[20]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[21]  P. Zangger,et al.  Muscle spindle control during locomotor movements generated by the deafferented spinal cord. , 1976, Acta physiologica Scandinavica.

[22]  S. Grillner,et al.  Central Generation of Locomotion in Vertebrates , 1976 .

[23]  Douglas G. Stuart,et al.  Neural Control of Locomotion , 1976, Advances in Behavioral Biology.

[24]  M. L. Shik,et al.  Neurophysiology of locomotor automatism. , 1976, Physiological reviews.

[25]  K. Pearson,et al.  Function of Segmental Reflexes in the Control of Stepping in Cockroaches and Cats , 1976 .

[26]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[27]  J. Cabelguen,et al.  Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles , 1980, Brain Research.

[28]  C. Pratt,et al.  Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. , 1980, Journal of neurophysiology.

[29]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[30]  W. Kristan,et al.  Neurons controlling the initiation, generation and modulation of leech swimming. , 1983, Symposia of the Society for Experimental Biology.

[31]  R. R. Sturrock,et al.  Neural Origin of Rhythmic Movements , 1984 .

[32]  K. Pearson,et al.  Neural circuits in the flight system of the locust. , 1985, Journal of neurophysiology.

[33]  S. Grillner,et al.  Activation of NMDA receptors elecits fictive locomotion and bistable membrane properties in the lamprey spinal cord , 1985, Brain Research.

[34]  C. Pratt,et al.  Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. , 1987, Journal of neurophysiology.

[35]  E. Jankowska,et al.  An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. , 1987, The Journal of physiology.

[36]  C. Buisseret-Delmas,et al.  An attempt to localize the lumbar locomotor generator in the rabbit using 2-deoxy-[14C]glucose autoradiography , 1988, Neuroscience Letters.

[37]  S. Grillner,et al.  Simulation of the segmental burst generating network for locomotion in lamprey , 1988, Neuroscience Letters.

[38]  F. Clarac,et al.  Two types of motor rhythm induced by NMDA and amines in an in vitro spinal cord preparation of neonatal rat , 1990, Neuroscience Letters.

[39]  A. Bulloch,et al.  In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. , 1990, Science.

[40]  J. C. Smith,et al.  Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. , 1991, Science.

[41]  S. Rossignol,et al.  Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs , 1991, Brain Research.

[42]  K. Pearson,et al.  Fictive motor patterns in chronic spinal cats. , 1991, Journal of neurophysiology.

[43]  J. Hoover,et al.  Retrograde labeling of lumbosacral interneurons following injections of red and green fluorescent microspheres into hindlimb motor nuclei of the cat. , 1992, Somatosensory & motor research.

[44]  Generation and peripheral control of locomotor rhythm , 1992 .

[45]  B. Schmidt,et al.  A comparison of motor patterns induced by N-methyl-d-aspartate , acetylcholine and serotonin in the in vitro neonatal rat spinal cord , 1994, Neuroscience Letters.

[46]  O. Kiehn,et al.  Sulphorhodamine‐labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. , 1994, The Journal of physiology.

[47]  D J Kriellaars,et al.  Mechanical entrainment of fictive locomotion in the decerebrate cat. , 1994, Journal of neurophysiology.

[48]  Some limitations of ventral root recordings for monitoring locomotion in the in vitro neonatal rat spinal cord preparation , 1994, Neuroscience Letters.

[49]  Yoshio Nakamura,et al.  Generation of masticatory rhythm in the brainstem , 1995, Neuroscience Research.

[50]  K. Pearson Proprioceptive regulation of locomotion , 1995, Current Opinion in Neurobiology.

[51]  D A McCrea,et al.  Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. , 1995, The Journal of physiology.

[52]  D. McCrea,et al.  Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. , 1995, The Journal of physiology.

[53]  D. McCrea,et al.  Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion. , 1996, The Journal of physiology.

[54]  O. Kiehn,et al.  Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. , 1996, Journal of neurophysiology.

[55]  M. Antal,et al.  Localization of last‐order premotor interneurons in the lumbar spinal cord of rats , 1997, The Journal of comparative neurology.

[56]  Y. Arshavsky,et al.  Pattern generation , 1997, Current Opinion in Neurobiology.

[57]  M. Dimitrijevic,et al.  Evidence for a Spinal Central Pattern Generator in Humans a , 1998, Annals of the New York Academy of Sciences.

[58]  Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. , 1998, Journal of neurophysiology.

[59]  Pierre A Guertin,et al.  Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles , 1998, Neuroscience Letters.

[60]  S. Rossignol,et al.  Early locomotor training with clonidine in spinal cats. , 1998, Journal of neurophysiology.

[61]  J. Hounsgaard,et al.  NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. , 1998, Journal of neurophysiology.

[62]  Serge Rossignol,et al.  Effects of Intrathecal α1- and α2-Noradrenergic Agonists and Norepinephrine on Locomotion in Chronic Spinal Cats , 1998 .

[63]  E. Bizzi,et al.  The construction of movement by the spinal cord , 1999, Nature Neuroscience.

[64]  N. Kudo,et al.  5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro , 2000, Neuroscience Letters.

[65]  S. Hochman,et al.  Diffuse distribution of sulforhodamine‐labeled neurons during serotonin‐evoked locomotion in the neonatal rat thoracolumbar spinal cord , 2000, The Journal of comparative neurology.

[66]  Michael J. O'Donovan,et al.  Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. , 2000, Journal of neurophysiology.

[67]  L. Jordan,et al.  Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization. , 2000, Journal of neurophysiology.

[68]  Ole Kiehn,et al.  Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat , 2002, The Journal of comparative neurology.

[69]  R. Harris-Warrick Voltage-sensitive ion channels in rhythmic motor systems , 2002, Current Opinion in Neurobiology.

[70]  Ole Kiehn,et al.  Firing Properties of Identified Interneuron Populations in the Mammalian Hindlimb Central Pattern Generator , 2002, The Journal of Neuroscience.

[71]  Ole Kiehn,et al.  Role of EphA4 and EphrinB3 in Local Neuronal Circuits That Control Walking , 2003, Science.

[72]  G. V. Di Prisco,et al.  The Pharmacology of Vertebrate Spinal Central Pattern Generators , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[73]  T. Jessell,et al.  Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements , 2004, Neuron.

[74]  Peter A. Getting,et al.  Neuronal organization of escape swimming inTritonia , 2004, Journal of comparative physiology.

[75]  S. Grillner,et al.  On the central generation of locomotion in the low spinal cat , 1979, Experimental Brain Research.

[76]  H. Hultborn,et al.  Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat , 2004, Experimental Brain Research.

[77]  G. Székely,et al.  The activity pattern of limb muscles in freely moving normal and deafferented newts , 1969, Experimental Brain Research.

[78]  S. Hooper,et al.  Crustacean Motor Pattern Generator Networks , 2004, Neurosignals.

[79]  L. M. Jordan,et al.  The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine , 1987, Experimental Brain Research.

[80]  P. Guertin,et al.  Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[81]  K. Pearson,et al.  Stimulation of the group I extensor afferents prolongs the stance phase in walking cats , 2004, Experimental Brain Research.

[82]  S. Miller,et al.  The spinal locomotor generator , 1977, Experimental Brain Research.

[83]  P. Stein Neuronal control of turtle hindlimb motor rhythms , 2005, Journal of Comparative Physiology A.

[84]  L. Jordan,et al.  Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked fictive locomotion , 2004, Experimental Brain Research.

[85]  P. Guertin Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice , 2004, Spinal Cord.

[86]  D. McCrea,et al.  Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. , 2005, Journal of neurophysiology.

[87]  O. Kiehn,et al.  EphA4 defines a class of excitatory locomotor-related interneurons. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Whelan,et al.  Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. , 2005, Journal of neurophysiology.

[89]  S. Rossignol,et al.  Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. , 2005, Journal of neurophysiology.

[90]  U. Nissen,et al.  Development of projection‐specific interneurons and projection neurons in the embryonic mouse and rat spinal cord , 2005, The Journal of comparative neurology.

[91]  Michael J. O'Donovan,et al.  Calcium imaging of network function in the developing spinal cord. , 2005, Cell calcium.

[92]  P. Guertin Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice , 2005, Spinal Cord.

[93]  R. Stein,et al.  Reanimating limbs after injury or disease , 2005, Trends in Neurosciences.

[94]  A. Freusbcrg,et al.  Reflexbewegungen beim Hunde , 1874, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[95]  E Jankowska,et al.  Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat , 2005, The Journal of physiology.

[96]  L. Jordan,et al.  Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method. , 2005, Journal of neurophysiology.

[97]  T. Jessell,et al.  Conditional Rhythmicity of Ventral Spinal Interneurons Defined by Expression of the Hb9 Homeodomain Protein , 2005, The Journal of Neuroscience.

[98]  R. Brownstone Beginning at the end: Repetitive firing properties in the final common pathway , 2006, Progress in Neurobiology.

[99]  E. Callaway,et al.  V1 spinal neurons regulate the speed of vertebrate locomotor outputs , 2006, Nature.

[100]  P. Guertin,et al.  Contribution of spinal 5‐HT1A and 5‐HT7 receptors to locomotor‐like movement induced by 8‐OH‐DPAT in spinal cord‐transected mice , 2006, The European journal of neuroscience.

[101]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[102]  O. Kiehn,et al.  Phenotype of V2‐derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord , 2007, The European journal of neuroscience.

[103]  P. Guertin,et al.  Plasticity in sublesionally located neurons following spinal cord injury. , 2007, Journal of neurophysiology.

[104]  R. Brownstone,et al.  Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons. , 2007, Journal of neurophysiology.

[105]  L. Vinay,et al.  Contribution of persistent sodium current to locomotor pattern generation in neonatal rats. , 2007, Journal of neurophysiology.

[106]  Pierre A. Guertin,et al.  Rôle du Ca2+ dans la propriété de type pacemaker des motoneurones spinaux , 2007 .

[107]  M. Dimitrijevic,et al.  Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. , 2007, Human movement science.

[108]  M. A. Masino,et al.  Persistent Sodium Currents Participate in Fictive Locomotion Generation in Neonatal Mouse Spinal Cord , 2007, The Journal of Neuroscience.

[109]  H. Hultborn,et al.  Spinal control of locomotion – from cat to man , 2007, Acta physiologica.

[110]  V. Edgerton,et al.  Changes in Motoneuron Properties and Synaptic Inputs Related to Step Training after Spinal Cord Transection in Rats , 2007, The Journal of Neuroscience.

[111]  Edouard Pearlstein,et al.  Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century , 2007, Brain Research Reviews.

[112]  [Role of Ca(2+) in the pacemaker-like property of spinal motoneurons]. , 2007, Medecine sciences : M/S.

[113]  S. Grillner,et al.  Neural bases of goal-directed locomotion in vertebrates—An overview , 2008, Brain Research Reviews.

[114]  Ansgar Büschges,et al.  Organizing network action for locomotion: Insights from studying insect walking , 2008, Brain Research Reviews.

[115]  Hans Hultborn,et al.  Thomas Graham Brown (1882–1965), Anders Lundberg (1920–), and the neural control of stepping , 2008, Brain Research Reviews.

[116]  Robert M. Brownstone,et al.  Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis , 2008, Brain Research Reviews.

[117]  Turgay Akay,et al.  V3 Spinal Neurons Establish a Robust and Balanced Locomotor Rhythm during Walking , 2008, Neuron.

[118]  Toshiaki Endo,et al.  Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord , 2008, Neuron.

[119]  Kim Lajoie,et al.  Cortical mechanisms involved in visuomotor coordination during precision walking , 2008, Brain Research Reviews.

[120]  E. Bizzi,et al.  Article history: , 2005 .

[121]  D. McCrea,et al.  Organization of mammalian locomotor rhythm and pattern generation , 2008, Brain Research Reviews.

[122]  P. Guertin A technological platform to optimize combinatorial treatment design and discovery for chronic spinal cord injury , 2008, Journal of neuroscience research.

[123]  P. Guertin,et al.  Role of spinal 5‐HT2 receptor subtypes in quipazine‐induced hindlimb movements after a low‐thoracic spinal cord transection , 2008, The European journal of neuroscience.

[124]  François Clarac,et al.  Some historical reflections on the neural control of locomotion , 2008, Brain Research Reviews.

[125]  Keir G. Pearson,et al.  Descending command systems for the initiation of locomotion in mammals , 2008, Brain Research Reviews.

[126]  P. Guertin,et al.  Effects of Spinal α2-Adrenoceptor and I1-Imidazoline Receptor Activation on Hindlimb Movement Induction in Spinal Cord-Injured Mice , 2008, Journal of Pharmacology and Experimental Therapeutics.

[127]  P. Guertin,et al.  Specific role of dopamine D1 receptors in spinal network activation and rhythmic movement induction in vertebrates , 2009, The Journal of physiology.

[128]  R. Stein,et al.  Spinal Reflexes in Ankle Flexor and Extensor Muscles After Chronic Central Nervous System Lesions and Functional Electrical Stimulation , 2009, Neurorehabilitation and neural repair.

[129]  P. Guertin,et al.  Key central pattern generators of the spinal cord , 2009, Journal of neuroscience research.

[130]  P. Guertin Recovery of locomotor function with combinatory drug treatments designed to synergistically activate specific neuronal networks. , 2009, Current medicinal chemistry.