Equation of state and self-bound droplet in Rabi-coupled Bose mixtures

Laser induced transitions between internal states of atoms have been playing a fundamental role to manipulate atomic clouds for many decades. In absence of interactions each atom behaves independently and their coherent quantum dynamics is described by the Rabi model. Since the experimental observation of Bose condensation in dilute gases, static and dynamical properties of multicomponent quantum gases have been extensively investigated. Moreover, at very low temperatures quantum fluctuations crucially affect the equation of state of many-body systems. Here we study the effects of quantum fluctuations on a Rabi-coupled two-component Bose gas of interacting alkali atoms. The divergent zero-point energy of gapless and gapped elementary excitations of the uniform system is properly regularized obtaining a meaningful analytical expression for the beyond-mean-field equation of state. In the case of attractive inter-particle interaction we show that the quantum pressure arising from Gaussian fluctuations can prevent the collapse of the mixture with the creation of a self-bound droplet. We characterize the droplet phase and discover an energetic instability above a critical Rabi frequency provoking the evaporation of the droplet. Finally, we suggest an experiment to observe such quantum droplets using Rabi-coupled internal states of K39 atoms.

[1]  Ground state and quasiparticle spectrum of a two-component Bose-Einstein condensate , 2000, cond-mat/0012011.

[2]  D. Petrov,et al.  Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. , 2015, Physical review letters.

[3]  M. Inguscio,et al.  Feshbach resonances in ultracold 39K , 2007, 0705.3036.

[4]  B. Malomed,et al.  Rabi flopping induces spatial demixing dynamics. , 2011, Physical review letters.

[5]  Marius Lysebo,et al.  Feshbach resonances and transition rates for cold homonuclear collisions between K 39 and K 41 atoms , 2010 .

[6]  Tilman Pfau,et al.  Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.

[7]  Hui Zhai,et al.  Collective dipole oscillations of a spin-orbit coupled Bose-Einstein condensate. , 2012, Physical review letters.

[8]  M. Möttönen,et al.  Non-Abelian magnetic monopole in a Bose-Einstein condensate. , 2009, Physical review letters.

[9]  A. Green,et al.  Inhomogeneous phase formation on the border of itinerant ferromagnetism. , 2009, Physical review letters.

[10]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[11]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[12]  M. Merkl,et al.  Atomic Zitterbewegung , 2008, 0803.4189.

[13]  I. Bloch,et al.  Many-body interferometry of a Rydberg-dressed spin lattice , 2016, Nature Physics.

[14]  L. Santos,et al.  Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates , 2016, 1605.08676.

[15]  H. Stoof,et al.  Ultracold Quantum Fields , 2009 .

[16]  R. Duine,et al.  Hydrodynamic modes of partially condensed Bose mixtures , 2015, 1502.03138.

[17]  F. Toigo,et al.  Zero-point energy of ultracold atoms , 2016, 1606.03699.

[18]  Yun Li,et al.  Quantum tricriticality and phase transitions in spin-orbit coupled Bose-Einstein condensates. , 2012, Physical review letters.

[19]  Ángela Molina,et al.  Some Fundamental Concepts , 2016 .

[20]  N. Pavloff,et al.  Hawking radiation in a two-component Bose-Einstein condensate , 2013, 1307.2843.

[21]  L. Sanchez-Palencia,et al.  Two-component Bose gases with one-body and two-body couplings , 2013, 1307.0488.

[22]  A. Schakel Boulevard of Broken Symmetries: Effective Field Theories of Condensed Matter , 2008 .

[23]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[24]  M. Randeria,et al.  Quantum fluctuations in the superfluid state of the BCS-BEC crossover , 2007, 0709.2653.

[25]  Tarik Yefsah,et al.  Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. , 2012, Physical review letters.

[26]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[27]  D. M. Larsen BINARY MIXTURES OF DILUTE BOSE GASES WITH REPULSIVE INTERACTIONS AT LOW TEMPERATURE , 1963 .

[28]  C. Wieman,et al.  Measurements of Relative Phase in Two-Component Bose-Einstein Condensates [Phys. Rev. Lett. 81, 1543 (1998)] , 1998 .

[29]  L. Salasnich,et al.  Itinerant ferromagnetism of two-dimensional repulsive fermions with Rabi coupling , 2017, 1704.00483.

[30]  M. Ray,et al.  Observation of Dirac monopoles in a synthetic magnetic field , 2014, Nature.

[31]  R. Wilson,et al.  Ground-state phase diagram of a dipolar condensate with quantum fluctuations , 2016, 1605.04964.

[32]  Yun Li,et al.  Anisotropic dynamics of a spin-orbit-coupled Bose-Einstein condensate , 2012, 1207.6804.

[33]  Hui Zhai,et al.  Spin-orbit coupled degenerate Fermi gases. , 2012, Physical review letters.

[34]  I. Bloch,et al.  Crystallization in Ising quantum magnets , 2015, Science.

[35]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[36]  I. Bloch,et al.  Crystallization in Ising quantum magnets , 2014, Science.

[37]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[38]  M. Hussein,et al.  Bogoliubov theory for mutually coherent condensates , 2003 .

[39]  Clarissa Wink,et al.  Observing the Rosensweig instability of a quantum ferrofluid , 2015, Nature.

[40]  N. Bar-Gill,et al.  Atomic homodyne detection of continuous-variable entangled twin-atom states , 2011, Nature.

[41]  R. Wilson,et al.  Self-bound dipolar droplet: A localized matter wave in free space , 2016, 1606.00824.

[42]  Immanuel Bloch,et al.  Microscopic observation of magnon bound states and their dynamics , 2013, Nature.

[43]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[44]  D S Petrov,et al.  Ultradilute Low-Dimensional Liquids. , 2016, Physical review letters.

[45]  W. Ertmer,et al.  Twin Matter Waves for Interferometry Beyond the Classical Limit , 2011, Science.

[46]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[47]  Cirac,et al.  Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. , 1996, Physical review letters.

[48]  L. Pezzè,et al.  Loschmidt Echo for quantum metrology , 2016, 1604.04246.

[49]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[50]  L. Santos,et al.  Quantum filaments in dipolar Bose-Einstein condensates , 2016, 1601.04501.

[51]  A. Recati,et al.  A study of coherently coupled two-component Bose-Einstein condensates , 2013, 1301.6864.

[52]  Jens O Andersen Theory of the weakly interacting Bose gas , 2004 .