Quasi-periodic spatiotemporal filtering

This paper presents the online estimation of temporal frequency to simultaneously detect and identify the quasiperiodic motion of an object. We introduce color to increase discriminative power of a reoccurring object and to provide robustness to appearance changes due to illumination changes. Spatial contextual information is incorporated by considering the object motion at different scales. We combined spatiospectral Gaussian filters and a temporal reparameterized Gabor filter to construct the online temporal frequency filter. We demonstrate the online filter to respond faster and decay faster than offline Gabor filters. Further, we show the online filter to be more selective to the tuned frequency than Gabor filters. We contribute to temporal frequency analysis in that we both identify ("what") and detect ("when") the frequency. In color video, we demonstrate the filter to detect and identify the periodicity of natural motion. The velocity of moving gratings is determined in a real world example. We consider periodic and quasiperiodic motion of both stationary and nonstationary objects.

[1]  E. de Boer,et al.  On cochlear encoding: potentialities and limitations of the reverse-correlation technique. , 1978, The Journal of the Acoustical Society of America.

[2]  Bruno A. Olshausen,et al.  A new window on sound , 2002, Nature Neuroscience.

[3]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Yang Song,et al.  Monocular perception of biological motion-detection and labeling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  J. Lebensohn Color in Business, Science, and Industry , 1952 .

[6]  J. J. Koenderink,et al.  Scale-time , 1988, Biological Cybernetics.

[7]  Arnold W. M. Smeulders,et al.  Color texture measurement and segmentation , 2005, Signal Process..

[8]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[9]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[10]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Joost van de Weijer,et al.  Fast Anisotropic Gauss Filtering , 2002, ECCV.

[12]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing , 2004, Concurr. Pract. Exp..

[13]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[14]  T. Irino,et al.  A time-domain, level-dependent auditory filter: The gammachirp , 1997 .

[15]  Eero P. Simoncelli,et al.  Representing retinal image speed in visual cortex , 2001, Nature Neuroscience.

[16]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Lucas J. van Vliet,et al.  Recursive Gabor filtering , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[18]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[19]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[20]  William J. Christmas,et al.  Recognising human running behaviour in sports video sequences , 2002, Object recognition supported by user interaction for service robots.

[21]  Randal C. Nelson,et al.  Detection and Recognition of Periodic, Nonrigid Motion , 1997, International Journal of Computer Vision.

[22]  Arnold W. M. Smeulders,et al.  Fast occluded object tracking by a robust appearance filter , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Lucas J. van Vliet,et al.  Recursive implementation of the Gaussian filter , 1995, Signal Process..

[25]  Mubarak Shah,et al.  Cyclic motion detection for motion based recognition , 1994, Pattern Recognit..

[26]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.