Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance

Abstract Vertically aligned hierarchical WO 3 nano-architectures on transparent conducting substrate (3×2.5 cm 2 in size and sheet resistance R s =10 Ω) are produced via a template-free solvothermal method. The nanostructured array films with thicknesses of about 1.1 μm show remarkable enhancement of the electrochromic properties in visible spectrum and infrared region. In particular, a significant optical modulation (66.5% and 66.0% at 633 nm, 73.8% and 53.9% at 2000 nm, 57.7% and 51.7% at 8 μm), fast switching speed (4.6 s/3.6 s and 2.0 s/3.4 s), high coloration efficiency (126 and 120 cm 2  C −1 at 633 nm) and excellent cycling stability (maintained 77.5% and 81.7% of the initial optical modulation after 4500-cycles) are achieved for the nanotree and nanowire arrays, respectively. The improved electrochromic properties are mainly attributed to the vertically aligned structure and the porous space among the nanotrees or nanowires, which make the diffusion of H + in these arrays easier and also supply larger surface area for charge-transfer reactions.

[1]  J. Tu,et al.  An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte , 2009 .

[2]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[3]  Wei Xiao,et al.  Na2SO4-assisted synthesis of hexagonal-phase WO3 nanosheet assemblies with applicable electrochromic and adsorption properties , 2013 .

[4]  Hongzhi Wang,et al.  Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance , 2013 .

[5]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[6]  K. Ho,et al.  Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system , 2001 .

[7]  John A. Woollam,et al.  Visible and infrared optical constants of electrochromic materials for emissivity modulation applications , 1998 .

[8]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[9]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[10]  N. Naseri,et al.  Improved electrochromical properties of sol–gel WO3 thin films by doping gold nanocrystals , 2010 .

[11]  P. Patil,et al.  Titanium doping effects in electrochromic pulsed spray pyrolysed WO3 thin films , 2008 .

[12]  Feng Zheng,et al.  Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates , 2013 .

[13]  T. Pauporté A Simplified Method for WO3 Electrodeposition. , 2003 .

[14]  Liejin Guo,et al.  Vertically aligned WO₃ nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. , 2011, Nano letters.

[15]  Yao Li,et al.  Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device , 2012 .

[16]  J. Tu,et al.  Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers , 2010 .

[17]  Jin-Han Lin,et al.  Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods , 2013 .

[18]  Hongzhi Wang,et al.  Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance , 2012 .

[19]  Ali E. Aliev,et al.  Nanostructured materials for electrochromic devices , 2002 .

[20]  Jun Zhang,et al.  An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. , 2012, Nanoscale.

[21]  T. Yashima,et al.  The character of WO3 film prepared with RF sputtering , 2007 .

[22]  Xiao Wei Sun,et al.  Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties. , 2011, ACS applied materials & interfaces.

[23]  Jen‐Sue Chen,et al.  An efficient route to nanostructured tungsten oxide films with improved electrochromic properties. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  T. Pauporté A Simplified Method for WO 3 Electrodeposition , 2002 .

[25]  A. Rougier,et al.  IR electrochromic WO3 thin films: From optimization to devices , 2009 .

[26]  J. Tu,et al.  Graphene sheet/porous NiO hybrid film for supercapacitor applications. , 2011, Chemistry.

[27]  Jun Zhang,et al.  Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties , 2010 .

[28]  S. Zhuiykov,et al.  The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. , 2012, Nanoscale.

[29]  Aicheng Chen,et al.  Facile preparation of platelike tungsten oxide thin film electrodes with high photoelectrode activity. , 2011, ACS applied materials & interfaces.

[30]  B. Ohtani,et al.  Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure. , 2010, Chemical communications.

[31]  Ullrich Steiner,et al.  Enhanced Electrochromism in Gyroid‐Structured Vanadium Pentoxide , 2012, Advanced materials.

[32]  J. Tu,et al.  Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation , 2011 .

[33]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[34]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.

[35]  P. K. Effa,et al.  Discharge Kinetics of the Nickel Electrode , 1984 .

[36]  J. Tu,et al.  Microstructure and infrared reflectance modulation properties in DC-sputtered tungsten oxide films , 2011 .

[37]  Gajanana C. Birur,et al.  Large, Switchable Electrochromism in the Visible Through Far‐Infrared in Conducting Polymer Devices , 2002 .

[38]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[39]  S. A. Agnihotry,et al.  Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance , 2004 .

[40]  Thomas F. Jaramillo,et al.  Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO3 Thin Films , 2003 .

[41]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[42]  Sreeram Vaddiraju,et al.  Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires. , 2007, Small.

[43]  Guofa Cai,et al.  Ultra-thin WO3 nanorod embedded polyaniline composite thin film: Synthesis and electrochromic characteristics , 2013 .

[44]  Guofa Cai,et al.  Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid , 2013 .

[45]  Xiaodong Jia,et al.  Electrochromic WO3 films prepared by a new electrodeposition method , 2000 .

[46]  Guofa Cai,et al.  Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays , 2013 .

[47]  Guofa Cai,et al.  One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance , 2013 .

[48]  D. Sokaras,et al.  Origin of electrochromism in high-performing nanocomposite nickel oxide. , 2013, ACS applied materials & interfaces.

[49]  Xingfang Hu,et al.  Electrochromic properties of TiO2-doped WO3 films spin-coated from Ti-stabilized peroxotungstic acid , 2001 .

[50]  Claes G. Granqvist,et al.  Oxide Electrochromics : Why, How, and Whither , 2008 .

[51]  Y. Sung,et al.  The improving electrochromic performance of nickel oxide film using aqueous N,N-dimethylaminoethanol solution , 2012 .

[52]  C. Lampert Large-Area Smart Glass And Integrated Photovoltaics , 2003 .

[53]  J. Tu,et al.  Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis , 2011 .