Cubic Graphs, Disjoint Matchings and Some Inequalities

For $k = 2,3$ and a cubic graph $G$ let $\nu_k(G)$ denote the size of a maximum $k$-edge-colorable subgraph of $G$. Mkrtchyan, Petrosyan and Vardanyan proved that $\nu_2(G)\geq \frac45\cdot |V(G)|$, $\nu_3(G)\geq \frac76\cdot |V(G)|$ ~\cite{samvel:2010}. They were also able to show that $\nu_2(G)+\nu_3(G)\geq 2\cdot |V(G)|$ ~\cite{samvel:2014} and $\nu_2(G) \leq \frac{|V(G)| + 2\cdot \nu_3(G)}{4}$ ~\cite{samvel:2010}. In the present work, we show that the last two inequalities imply the first two of them. Moreover, we show that $\nu_2(G) \geq \alpha \cdot \frac{|V(G)| + 2\cdot \nu_3(G)}{4} $, where $\alpha=\frac{16}{17}$, if $G$ is a cubic graph, $\alpha=\frac{20}{21}$, if $G$ is a cubic graph containing a perfect matching, $\alpha=\frac{44}{45}$, if $G$ is a bridgeless cubic graph. \\ Finally, we investigate the parameters $\nu_2(G)$ and $\nu_3(G)$ in the class of claw-free cubic graphs. We improve the lower bounds for $\nu_2(G)$ and $\nu_3(G)$ for claw-free bridgeless cubic graphs to $\nu_2(G)\geq \frac{29}{30}\cdot |V(G)|$, $\nu_3(G)\geq \frac{43}{45}\cdot |E(G)|$. We also show that $\nu_2(G) \geq \frac{35}{36} \cdot |V(G)|$ when $n \geq 48$. On the basis of these inequalities we are able to improve the coefficient $\alpha$ for bridgeless claw-free cubic graphs.

[1]  Jean-Marie Vanherpe,et al.  On Parsimonious Edge-Colouring of Graphs with Maximum Degree Three , 2013, Graphs Comb..

[2]  Sang-il Oum Perfect Matchings in Claw-free Cubic Graphs , 2011, Electron. J. Comb..

[3]  David P. Sumner,et al.  Graphs with 1-factors , 1974 .

[4]  Romeo Rizzi Approximating the maximum 3-edge-colorable subgraph problem , 2009, Discret. Math..

[5]  Bill Jackson,et al.  Even subgraphs of bridgeless graphs and 2-factors of line graphs , 2007, Discret. Math..

[6]  Abraham D. Flaxman,et al.  Maximum Matchings in Regular Graphs of High Girth , 2007, Electron. J. Comb..

[7]  Takao Nishizeki On the maximum matchings of regular multigraphs , 1981, Discret. Math..

[8]  C. Shannon A Theorem on Coloring the Lines of a Network , 1949 .

[9]  Takao Nishizeki,et al.  Lower bounds on the cardinality of the maximum matchings of planar graphs , 1979, Discret. Math..

[10]  Michael O. Albertson,et al.  The edge chromatic difference sequence of a cubic graph , 1997, Discret. Math..

[11]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[12]  Michael A. Henning,et al.  Tight Lower Bounds on the Size of a Maximum Matching in a Regular Graph , 2007, Graphs Comb..

[13]  Eckhard Steffen,et al.  Classifications and characterizations of snarks , 1998, Discret. Math..

[14]  Alberto Cavicchioli,et al.  A survey on snarks and new results: Products, reducibility and a computer search , 1998, J. Graph Theory.

[15]  Frank Harary,et al.  Graph Theory , 2016 .

[16]  Vahan V. Mkrtchyan,et al.  On disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs , 2009, Discret. Appl. Math..

[17]  Vahan V. Mkrtchyan,et al.  On disjoint matchings in cubic graphs , 2008, Discret. Math..

[18]  Lukasz Kowalik,et al.  Beyond the Vizing's Bound for at Most Seven Colors , 2014, SIAM J. Discret. Math..

[19]  Alberto Cavicchioli,et al.  A survey on snarks and new results: Products, reducibility and a computer search , 1998 .

[20]  J. Weinstein Large Matchings in Graphs , 1974, Canadian Journal of Mathematics.

[21]  Michael O. Albertson,et al.  Parsimonious edge coloring , 1996, Discret. Math..

[22]  Eckhard Steffen Measurements of edge-uncolorability , 2004, Discret. Math..

[23]  A. Shapira,et al.  Extremal Graph Theory , 2013 .