A full multigrid method for eigenvalue problems

In this paper, a full (nested) multigrid scheme is proposed to solve eigenvalue problems. The idea here is to use a correction method to transform the eigenvalue problem solving to a series of corresponding boundary value problem solving and eigenvalue problems defined on a very low-dimensional finite element space. The boundary value problems which are defined on a sequence of multilevel finite element spaces can be solved by some multigrid iteration steps. The computational work of this new scheme can reach the same optimal order as solving the corresponding boundary value problem by the full multigrid method. Therefore, this type of full multigrid method improves the overfull efficiency of the eigenvalue problem solving.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  V. V. Shaidurov,et al.  Multigrid Methods for Finite Elements , 1995 .

[3]  F. Chatelin Spectral approximation of linear operators , 2011 .

[4]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[5]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[6]  Wolfgang Hackbusch,et al.  On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method , 1979 .

[7]  J. Pasciak,et al.  New convergence estimates for multigrid algorithms , 1987 .

[8]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[9]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[10]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[13]  L. Ridgway Scott,et al.  Higher-dimensional nonnested multigrid methods , 1992 .

[14]  Hehu Xie,et al.  A full multigrid method for eigenvalue problems , 2014, J. Comput. Phys..

[15]  Hehu Xie,et al.  A type of multilevel method for the Steklov eigenvalue problem , 2014 .

[16]  James H. Bramble,et al.  The analysis of multigrid methods , 2000 .

[17]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .