Deep Learning Based Patient-Specific Classification of Arrhythmia on ECG signal

The classification of the heartbeat type is an essential function in the automatical electrocardiogram (ECG) analysis algorithm. The guideline of the ANSI/AAMI EC57 defined five types of heartbeat: non-ectopic or paced beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion of a ventricular and normal beat (F), pace beat or fusion of a paced and a normal or beat that cannot be classified (Q). In the work, a deep neural network based method was proposed to classify these five types of heartbeat. After removing the noise from ECG signals by a low-pass filter, the two-lead heartbeat segments with 2-s length were generated on the filtered signals, and classified by an adaptive ResNet model. The proposed method was evaluated on the MIT-BIH Arrhythmia Database with the patient-specific pattern. The overall accuracy was 98.6% and sensitivity of N, S, V, F were 99.4%, 85.4%, 96.6%, 90.6% respectively. Experimental results show that the proposed method achieved a good performance, and would be useful in the clinic practice.

[1]  B. V. K. Vijaya Kumar,et al.  Heartbeat Classification Using Morphological and Dynamic Features of ECG Signals , 2012, IEEE Transactions on Biomedical Engineering.

[2]  Jian Wang,et al.  Patient-specific ECG classification by deeper CNN from generic to dedicated , 2018, Neurocomputing.

[3]  Moncef Gabbouj,et al.  A Generic and Robust System for Automated Patient-Specific Classification of ECG Signals , 2009, IEEE Transactions on Biomedical Engineering.

[4]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[5]  Philip de Chazal,et al.  Automatic classification of heartbeats using ECG morphology and heartbeat interval features , 2004, IEEE Transactions on Biomedical Engineering.

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Giuseppe De Pietro,et al.  A deep learning approach for ECG-based heartbeat classification for arrhythmia detection , 2018, Future Gener. Comput. Syst..

[8]  Philip de Chazal,et al.  A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features , 2006, IEEE Transactions on Biomedical Engineering.

[9]  Moncef Gabbouj,et al.  Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks , 2016, IEEE Transactions on Biomedical Engineering.

[10]  Jianqing Li,et al.  Patient-Specific Deep Architectural Model for ECG Classification , 2017, Journal of healthcare engineering.