Homological unimodularity and Calabi–Yau condition for Poisson algebras
暂无分享,去创建一个
[1] Xingting Wang,et al. DG Poisson algebra and its universal enveloping algebra , 2015, 1506.06574.
[2] C. Zhu. Twisted Poincaré duality for Poisson homology and cohomology of affine Poisson algebras , 2014 .
[3] S.-Q. Wang,et al. Twisted Poincar\'{e} duality between Poisson homology and Poisson cohomology , 2014, 1404.5177.
[4] Jia-Feng Lu,et al. Universal enveloping algebras of Poisson Ore extensions , 2014, 1403.5852.
[5] Jia-Feng Lu,et al. Universal enveloping algebras of Poisson Hopf algebras , 2014, 1402.2007.
[6] M. Towers. Poisson and Hochschild cohomology and the semiclassical limit , 2013, 1304.6003.
[7] A. Pichereau,et al. Calabi–Yau Algebras Viewed as Deformations of Poisson Algebras , 2011, 1107.4472.
[8] U. Umirbaev. Universal enveloping algebras and universal derivations of Poisson algebras , 2011, 1102.0366.
[9] Victor Ginzburg,et al. Noncommutative del Pezzo surfaces and Calabi-Yau algebras , 2007, 0709.3593.
[10] S. Launois,et al. Twisted Poincaré Duality for some Quadratic Poisson Algebras , 2006, math/0609390.
[11] V. Dolgushev. The Van den Bergh duality and the modular symmetry of a Poisson variety , 2006, math/0612288.
[12] V. Ginzburg. Calabi-Yau algebras , 2006, math/0612139.
[13] James J. Zhang,et al. Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras , 2006, math/0603732.
[14] Tomasz Maszczyk. Maximal commutative subalgebras, Poisson geometry and Hochschild homology , 2006, math/0603386.
[15] N. Marconnet. Homologies of cubic Artin–Schelter regular algebras , 2004 .
[16] Sophie Chemla. Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators , 2004 .
[17] Sophie Chemla. A duality property for complex Lie algebroids , 1999 .
[18] Sei-Qwon Oh. Poisson enveloping algebras , 1999 .
[19] J. Brylinski,et al. The outer derivation of a complex Poisson manifold , 1998, math/9802014.
[20] Michel Van den Bergh,et al. A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .
[21] A. Weinstein. The modular automorphism group of a Poisson manifold , 1997 .
[22] M. Bergh. Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .
[23] P. Xu. Gerstenhaber Algebras and BV-Algebras in Poisson Geometry , 1997, dg-ga/9703001.
[24] J. Huebschmann. Duality for Lie-Rinehart algebras and the modular class , 1997, dg-ga/9702008.
[25] M. Bergh. Noncommutative homology of some three-dimensional quantum spaces , 1994 .
[26] Sophie Chemla. Poincaré duality for $k$-$A$ Lie superalgebras , 1994 .
[27] Shrawan Kumar,et al. Cohomology of quantum groups at roots of unity , 1993 .
[28] Amnon Yekutieli. Dualizing complexes over noncommutative graded algebras , 1992 .
[29] Johannes Huebschmann,et al. Poisson cohomology and quantization. , 2013, 1303.3903.
[30] Jean-Luc Brylinski,et al. A differential complex for Poisson manifolds , 1988 .
[31] Armand Borel,et al. Algebraic D-modules , 1987 .
[32] I. Penkov. D-Modules on supermanifolds , 1983 .
[33] A. Lichnerowicz,et al. Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .
[34] R. Hartshorne. Residues And Duality , 1966 .
[35] G. Rinehart. DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS , 1963 .