Homological unimodularity and Calabi–Yau condition for Poisson algebras

[1]  Xingting Wang,et al.  DG Poisson algebra and its universal enveloping algebra , 2015, 1506.06574.

[2]  C. Zhu Twisted Poincaré duality for Poisson homology and cohomology of affine Poisson algebras , 2014 .

[3]  S.-Q. Wang,et al.  Twisted Poincar\'{e} duality between Poisson homology and Poisson cohomology , 2014, 1404.5177.

[4]  Jia-Feng Lu,et al.  Universal enveloping algebras of Poisson Ore extensions , 2014, 1403.5852.

[5]  Jia-Feng Lu,et al.  Universal enveloping algebras of Poisson Hopf algebras , 2014, 1402.2007.

[6]  M. Towers Poisson and Hochschild cohomology and the semiclassical limit , 2013, 1304.6003.

[7]  A. Pichereau,et al.  Calabi–Yau Algebras Viewed as Deformations of Poisson Algebras , 2011, 1107.4472.

[8]  U. Umirbaev Universal enveloping algebras and universal derivations of Poisson algebras , 2011, 1102.0366.

[9]  Victor Ginzburg,et al.  Noncommutative del Pezzo surfaces and Calabi-Yau algebras , 2007, 0709.3593.

[10]  S. Launois,et al.  Twisted Poincaré Duality for some Quadratic Poisson Algebras , 2006, math/0609390.

[11]  V. Dolgushev The Van den Bergh duality and the modular symmetry of a Poisson variety , 2006, math/0612288.

[12]  V. Ginzburg Calabi-Yau algebras , 2006, math/0612139.

[13]  James J. Zhang,et al.  Dualising complexes and twisted Hochschild (co)homology for noetherian Hopf algebras , 2006, math/0603732.

[14]  Tomasz Maszczyk Maximal commutative subalgebras, Poisson geometry and Hochschild homology , 2006, math/0603386.

[15]  N. Marconnet Homologies of cubic Artin–Schelter regular algebras , 2004 .

[16]  Sophie Chemla Rigid dualizing complex for quantum enveloping algebras and algebras of generalized differential operators , 2004 .

[17]  Sophie Chemla A duality property for complex Lie algebroids , 1999 .

[18]  Sei-Qwon Oh Poisson enveloping algebras , 1999 .

[19]  J. Brylinski,et al.  The outer derivation of a complex Poisson manifold , 1998, math/9802014.

[20]  Michel Van den Bergh,et al.  A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .

[21]  A. Weinstein The modular automorphism group of a Poisson manifold , 1997 .

[22]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[23]  P. Xu Gerstenhaber Algebras and BV-Algebras in Poisson Geometry , 1997, dg-ga/9703001.

[24]  J. Huebschmann Duality for Lie-Rinehart algebras and the modular class , 1997, dg-ga/9702008.

[25]  M. Bergh Noncommutative homology of some three-dimensional quantum spaces , 1994 .

[26]  Sophie Chemla Poincaré duality for $k$-$A$ Lie superalgebras , 1994 .

[27]  Shrawan Kumar,et al.  Cohomology of quantum groups at roots of unity , 1993 .

[28]  Amnon Yekutieli Dualizing complexes over noncommutative graded algebras , 1992 .

[29]  Johannes Huebschmann,et al.  Poisson cohomology and quantization. , 2013, 1303.3903.

[30]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[31]  Armand Borel,et al.  Algebraic D-modules , 1987 .

[32]  I. Penkov D-Modules on supermanifolds , 1983 .

[33]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[34]  R. Hartshorne Residues And Duality , 1966 .

[35]  G. Rinehart DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS , 1963 .