Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance

[1]  J. Shui,et al.  Environmentally Tough and Stretchable MXene Organohydrogel with Exceptionally Enhanced Electromagnetic Interference Shielding Performances , 2022, Nano-Micro Letters.

[2]  Wei Chen,et al.  Multifunctional Ti3C2Tx MXene/Low-Density Polyethylene Soft Robots with Programmable Configuration for Amphibious Motions. , 2021, ACS applied materials & interfaces.

[3]  Junwei Gu,et al.  Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review , 2021, Nano-Micro Letters.

[4]  Xin-yu Wu,et al.  Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. , 2021, ACS applied materials & interfaces.

[5]  J. Shui,et al.  Off/on switchable smart electromagnetic interference shielding aerogel , 2021 .

[6]  Junwei Gu,et al.  Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities , 2021, Nano-Micro Letters.

[7]  Hao‐Bin Zhang,et al.  Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances , 2020 .

[8]  Shuhui Yu,et al.  Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness. , 2020, ACS nano.

[9]  Tingting Wu,et al.  Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding , 2020 .

[10]  A. Ávila,et al.  Enhancing Electromagnetic Interference Shielding Effectiveness of Polymer Nanocomposites by Modifying Subsurface Carbon Nanotube Distribution , 2020, Advanced Engineering Materials.

[11]  E. Riedo,et al.  Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding , 2020, Matter.

[12]  Jun Pyo Hong,et al.  Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) , 2020, Science.

[13]  Xingyi Huang,et al.  A high performance wearable strain sensor with advanced thermal management for motion monitoring , 2020, Nature Communications.

[14]  C. Zhang,et al.  Nanocellulose‐MXene Biomimetic Aerogels with Orientation‐Tunable Electromagnetic Interference Shielding Performance , 2020, Advanced science.

[15]  Wei Chen,et al.  Flexible, Transparent and Conductive Ti3C2Tx MXene-Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. , 2020, ACS nano.

[16]  C. Koo,et al.  2D MXenes for Electromagnetic Shielding: A Review , 2020, Advanced Functional Materials.

[17]  Xungai Wang,et al.  Scalable Manufacturing of Free‐Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity , 2020, Advanced materials.

[18]  Kevin J. De France,et al.  Functional Materials from Nanocellulose: Utilizing Structure–Property Relationships in Bottom‐Up Fabrication , 2020, Advanced materials.

[19]  Congju Li,et al.  Flexible and Ultrathin Waterproof Cellular Membranes Based on High‐Conjunction Metal‐Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding , 2020, Advanced materials.

[20]  Tingting Wu,et al.  Ultralight, Flexible and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. , 2020, ACS nano.

[21]  Hui‐Ming Cheng,et al.  Superhigh Electromagnetic Interference Shielding of Ultrathin Aligned Pristine Graphene Nanosheets Film , 2020, Advanced materials.

[22]  L. J. Lee,et al.  Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes , 2020 .

[23]  Maria G. Villarreal,et al.  Performance study of ultrasonic assisted processing of CNT nanopaper/solventless epoxy composite , 2019, Composites Part B: Engineering.

[24]  Y. Gogotsi,et al.  Layer‐by‐Layer Assembly of Cross‐Functional Semi‐transparent MXene‐Carbon Nanotubes Composite Films for Next‐Generation Electromagnetic Interference Shielding , 2018, Advanced Functional Materials.

[25]  Q. Meng,et al.  Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding , 2018, Carbon.

[26]  Lei Zhu,et al.  Highly Anisotropic, Thermally Conductive, and Mechanically Strong Polymer Composites with Nacre-like Structure for Thermal Management Applications , 2018, ACS Applied Nano Materials.

[27]  Shaomao Xu,et al.  Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose , 2018, Science Advances.

[28]  Peiyu Wang,et al.  Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance. , 2018, ACS applied materials & interfaces.

[29]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[30]  Licheng Zhou,et al.  Microstructure Design of Lightweight, Flexible, and High Electromagnetic Shielding Porous Multiwalled Carbon Nanotube/Polymer Composites. , 2017, Small.

[31]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[32]  Licheng Zhou,et al.  Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding , 2016 .

[33]  Tengfei Zhang,et al.  Broadband and Tunable High‐Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam , 2015, Advanced materials.

[34]  R. Vajtai,et al.  Structured Reduced Graphene Oxide/Polymer Composites for Ultra‐Efficient Electromagnetic Interference Shielding , 2015 .

[35]  Jang-Kyo Kim,et al.  Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High‐Performance Electromagnetic Interference Shielding , 2014, Advanced materials.

[36]  Bin Shen,et al.  Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding , 2014 .

[37]  B. Wen,et al.  Reduced Graphene Oxides: Light‐Weight and High‐Efficiency Electromagnetic Interference Shielding at Elevated Temperatures , 2014, Advanced materials.

[38]  Luqi Liu,et al.  Nanostructured carbon materials based electrothermal air pump actuators. , 2014, Nanoscale.

[39]  Lars Wågberg,et al.  Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. , 2014, ACS nano.

[40]  I. Huynen,et al.  Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials , 2013 .

[41]  Hui-Ming Cheng,et al.  Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding , 2013, Advanced materials.

[42]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[43]  Li Shi,et al.  Thermal and Structural Characterizations of Individual Single‐, Double‐, and Multi‐Walled Carbon Nanotubes , 2009 .

[44]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[45]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[46]  R. Lawrence,et al.  Conductive Carbon Nanofiber–Polymer Foam Structures , 2005 .

[47]  P. Watts,et al.  High Permittivity from Defective Multiwalled Carbon Nanotubes in the X‐Band , 2003 .

[48]  M. Radosavljevic,et al.  High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes , 2001 .

[49]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[50]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[51]  Ron Dagani,et al.  CARBON-BASED ELECTRONICS , 1999 .

[52]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[53]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[54]  D. Chung,et al.  Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness , 1997 .

[55]  Robert C. Wolpert,et al.  A Review of the , 1985 .