PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site

[1]  G. Sayler,et al.  Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils , 2004, Biodegradation.

[2]  H. Kahng Cellular Responses of Pseudomonas sp. KK1 to Two-Ring Polycyclic Aromatic Hydrocarbon, Naphthalene , 2002 .

[3]  J. Kukor,et al.  Genetic and Functional Analysis of the tbc Operons for Catabolism of Alkyl- and Chloroaromatic Compounds inBurkholderia sp. Strain JS150 , 2001, Applied and Environmental Microbiology.

[4]  K. Oh,et al.  Physiological and phylogenetic analysis of Burkholderia sp. HY1 capable of aniline degradation , 2000 .

[5]  Dick B. Janssen,et al.  Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds , 1998 .

[6]  A. Goyal,et al.  Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39 , 1996, Applied and environmental microbiology.

[7]  Ikuo Watanabe,et al.  Microbial Degradation of Polycyclic Aromatic Hydrocarbons , 1994 .

[8]  C. Cerniglia,et al.  Metabolism of benz[a]anthracene by the filamentous fungus Cunninghamella elegans , 1994, Applied and environmental microbiology.

[9]  G. Zylstra,et al.  Cloning and Analysis of the Genes for Polycyclic Aromatic Hydrocarbon Degradationa , 1994 .

[10]  T. Sawada,et al.  Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82 , 1994, Journal of bacteriology.

[11]  M. Shiaris,et al.  Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816 , 1994, Journal of bacteriology.

[12]  G. Zylstra,et al.  Cloning and analysis of the genes for polycyclic aromatic hydrocarbon degradation. , 1994, Annals of the New York Academy of Sciences.

[13]  G. Sayler,et al.  NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids , 1993, Applied and environmental microbiology.

[14]  G. Sayler,et al.  Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene , 1993, Applied and environmental microbiology.

[15]  B. Ensley,et al.  Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. , 1993, Gene.

[16]  E. Arvin,et al.  Groundwater pollution arising from the disposal of creosote waste. Discussion. Author's reply , 1992 .

[17]  R. Cammack,et al.  The electron-transport proteins of hydroxylating bacterial dioxygenases. , 1992, Annual review of microbiology.

[18]  C. Serdar,et al.  Isolation and characterization of altered plasmids in mutant strains of Pseudomonas putida NCIB 9816. , 1989, Biochemical and biophysical research communications.

[19]  B. Hoffman,et al.  Electron-nuclear double resonance spectroscopy of 15N-enriched phthalate dioxygenase from Pseudomonas cepacia proves that two histidines are coordinated to the [2Fe-2S] Rieske-type clusters. , 1989, Biochemistry.

[20]  D. Ballou,et al.  Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. , 1987, The Journal of biological chemistry.

[21]  M. Trapido,et al.  [Monitoring of polycyclic aromatic hydrocarbons in the aquatic environment]. , 1987, Eksperimental'naia onkologiia.

[22]  R. Cammack,et al.  An investigation of the iron-sulphur proteins of benzene dioxygenase from Pseudomonas putida by electron-spin-resonance spectroscopy. , 1984, The Biochemical journal.

[23]  W. S. Zaugg,et al.  STUDIES ON THE ELECTRON TRANSFER SYSTEM. 58. PROPERTIES OF A NEW OXIDATION-REDUCTION COMPONENT OF THE RESPIRATORY CHAIN AS STUDIED BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. , 1964, The Journal of biological chemistry.