Generalized conservative approximations of split convective derivative operators

We propose a strategy to design locally conservative finite-difference approximations of convective derivatives for shock-free compressible flows with arbitrary order of accuracy, that generalizes the approach of Ducros et al. (2000) [1], and that can be applied as a building block of low-dissipative, hybrid shock-capturing methods. The approximations stem from application of standard central difference formulas to split forms of the convective terms in the compressible Euler equations, which guarantee strong numerical stability and (near) energy preservation in the inviscid limit. A convenient implementation of the high-order fluxes is suggested, which guarantees improved computational efficiency over existing methods. Numerical tests performed for isotropic turbulence at zero viscosity show stability of schemes with order of accuracy up to ten, and effectiveness of convective splitting of Kennedy and Gruber (2008) [2] in providing extra stability in the presence of strong density variations. Numerical simulations of compressible turbulent boundary layer flow indicate suitability of the method for non-uniform grids, and overall support superior computational efficiency of high-order schemes.

[1]  P. Moin,et al.  On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows , 1997 .

[2]  J. H. Ferziger,et al.  Numerical simulation of a compressible homogeneous, turbulent shear flow. Ph.D. Thesis , 1981 .

[3]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[4]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[5]  A. Defant,et al.  Book Review: The atmosphere and the sea in motion. Scientific contributions to the Rossby Memorial Volume, (edited by BERT BOLIN, Stockholm University), Rockefeller Inst. Press, New York, in association with Oxford University Press, 1959. 509 Sieten mit vielen Abbildungen , 1960 .

[6]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[7]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[8]  Matteo Bernardini,et al.  Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation , 2010, Journal of Fluid Mechanics.

[9]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[10]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[11]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .

[12]  Paolo Orlandi,et al.  Fluid Flow Phenomena: A Numerical Toolkit , 1999 .

[13]  P. Moin,et al.  Effect of numerical dissipation on the predicted spectra for compressible turbulence , 2022 .

[14]  Peter N. Joubert,et al.  Low-Reynolds-number turbulent boundary layers , 1991, Journal of Fluid Mechanics.

[15]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[16]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[17]  Joel H. Ferziger,et al.  Numerical simulation of a compressible, homogeneous, turbulent shear flow , 1981 .

[18]  Gregory A. Blaisdell,et al.  The effect of the formulation of nonlinear terms on aliasing errors in spectral methods , 1996 .

[19]  P. Lax,et al.  Systems of conservation laws , 1960 .

[20]  P. Moin,et al.  Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[21]  Christopher A. Kennedy,et al.  Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid , 2008, J. Comput. Phys..

[22]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[23]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[24]  Joseph A. Schetz,et al.  Turbulent Shear Layers in Supersonic Flow , 1998 .

[25]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[26]  Robert H. Kraichnan,et al.  On the Statistical Mechanics of an Adiabatically Compressible Fluid , 1955 .