HTSC Josephson junctions anddc SQUIDs onSrTiO3 bicrystal substrates grown by floating zone method

[1]  B. Ruck,et al.  Rapid single‐flux‐quantum balanced comparator based on high‐Tc bicrystal Josephson junctions , 1996 .

[2]  J. Tsai,et al.  Progress in understanding the physics of HTS Josephson junctions , 1995, IEEE Transactions on Applied Superconductivity.

[3]  L.P. Lee,et al.  Low-noise, single-layer YBa/sub 2/Cu/sub 3/O/sub 7-x/ DC SQUID magnetometers at 77 K , 1995, IEEE Transactions on Applied Superconductivity.

[4]  R. Cantor,et al.  Key elements for a sensitive 77 K direct current superconducting quantum interference device magnetometer , 1995 .

[5]  Gallagher,et al.  Initial-vortex-entry-related magnetic hysteresis in thin-film SQUID magnetometers. , 1994, Physical review. B, Condensed matter.

[6]  M. Kupriyanov,et al.  CURRENT TRANSPORT MECHANISM IN HIGH-T-C SUPERCONDUCTING JOSEPHSON-JUNCTIONS ON BICRYSTALS , 1994 .

[7]  Z. Ivanov,et al.  Bicrystal junctions and superconducting quantum interference devices in YBa2Cu3O7 thin films , 1994 .

[8]  G. Zaharchuk,et al.  Flux focusing effects in planar thin‐film grain‐boundary Josephson junctions , 1991 .

[9]  A. Tzalenchuk,et al.  On the possibility of usage of crystalline composites in investigations of high-Tc superconductivity , 1991 .

[10]  E. V. Pechen,et al.  Properties of the YBCO thin film interferometers fabricated on ZrO/sub 2/ bicrystal substrates , 1991 .

[11]  A. Balbashov,et al.  Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating , 1981 .