Mesoscopic structure of neuronal tracts from time-dependent diffusion

Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient approaches its macroscopic limit slowly, in a (ln t)/t fashion. The logarithmic singularity arises due to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based on histological data from the splenium, and argue that the time dependent contribution to the overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. This dominance may explain the bias in measuring axon diameters in clinical settings. The short range disorder is also reflected in the asymptotically linear frequency dependence of the diffusion coefficient measured with oscillating gradients, in agreement with recent experiments. Our results relate the measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative interpretation of axonal diameter mapping techniques.

[1]  Schwartz,et al.  Diffusion propagator as a probe of the structure of porous media. , 1992, Physical review letters.

[2]  Janez Stepišnik,et al.  Time-dependent self-diffusion by NMR spin-echo , 1993 .

[3]  Christian Beaulieu,et al.  Oscillating gradient spin‐echo (OGSE) diffusion tensor imaging of the human brain , 2014, Magnetic resonance in medicine.

[4]  W. Rushton A theory of the effects of fibre size in medullated nerve , 1951, The Journal of physiology.

[5]  Joseph A. Helpern,et al.  Diffusion distinguishes between axonal loss and demyelination in brain white matter , 2011 .

[6]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[7]  S J Blackband,et al.  Oscillating and pulsed gradient diffusion magnetic resonance microscopy over an extended b‐value range: Implications for the characterization of tissue microstructure , 2013, Magnetic resonance in medicine.

[8]  C Baldock,et al.  Test liquids for quantitative MRI measurements of self‐diffusion coefficient in vivo , 2000, Magnetic resonance in medicine.

[9]  Sune Nørhøj Jespersen,et al.  Equivalence of double and single wave vector diffusion contrast at low diffusion weighting , 2012, NMR in biomedicine.

[10]  S. Mori,et al.  Probing mouse brain microstructure using oscillating gradient diffusion MRI , 2012, Magnetic resonance in medicine.

[11]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[12]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[13]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[14]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[15]  Dmitry S Novikov,et al.  Surface-to-volume ratio with oscillating gradients. , 2011, Journal of magnetic resonance.

[16]  Julien Cohen-Adad,et al.  The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter , 2015, NeuroImage.

[17]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details , 2005 .

[18]  D. Bihan,et al.  Relationship between the diffusion time and the diffusion MRI signal observed at 17.2 tesla in the healthy rat brain cortex , 2014, Magnetic resonance in medicine.

[19]  P. Anderson,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[20]  G. Yovel,et al.  In vivo correlation between axon diameter and conduction velocity in the human brain , 2014, Brain Structure and Function.

[21]  Hui Zhang,et al.  Axon diameter mapping in the presence of orientation dispersion with diffusion MRI , 2011, NeuroImage.

[22]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[23]  R. Gruetter,et al.  Investigation of field and diffusion time dependence of the diffusion‐weighted signal at ultrahigh magnetic fields , 2013, NMR in biomedicine.

[24]  E. Achten,et al.  The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging , 2008, Physics in medicine and biology.

[25]  A. Sukstanskii,et al.  Effects of permeable boundaries on the diffusion-attenuated MR signal: insights from a one-dimensional model. , 2004, Journal of magnetic resonance.

[26]  V. Kiselev,et al.  Effective medium theory of a diffusion‐weighted signal , 2010, NMR in biomedicine.

[27]  P. B. Visscher Analytic fixed points of discrete equations of motion: Universality in homogeneous diffusive systems , 1984 .

[28]  M. Ptito,et al.  Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI , 2012, Magnetic resonance in medicine.

[29]  G J Barker,et al.  Self‐diffusion in CNS tissue by volume‐selective proton NMR , 1994, Magnetic resonance in medicine.

[30]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .

[31]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[32]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[33]  Roland Bammer,et al.  In vivo investigation of restricted diffusion in the human brain with optimized oscillating diffusion gradient encoding , 2014, Magnetic resonance in medicine.

[34]  Vojkan Jaksic,et al.  Field Theory of Non-Equilibrium Systems , 2012 .

[35]  P. Callaghan,et al.  RAPID COMMUNICATION: NMR microscopy of dynamic displacements: k-space and q-space imaging , 1988 .

[36]  I. Lifshitz,et al.  The energy spectrum of disordered systems , 1964 .

[37]  P. Basser,et al.  In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. , 2009, Brain : a journal of neurology.

[38]  Aleksandar Donev,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. , 2005 .

[39]  R. Caminiti,et al.  Comments on the paper by Horowitz et al. (2014) , 2014, Brain Structure and Function.

[40]  Aleksandar Donev,et al.  Unexpected density fluctuations in jammed disordered sphere packings. , 2005, Physical review letters.

[41]  Denis S. Grebenkov,et al.  NMR survey of reflected brownian motion , 2007 .

[42]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[43]  Paul T. Callaghan,et al.  Pulsed-Gradient Spin-Echo NMR for Planar, Cylindrical, and Spherical Pores under Conditions of Wall Relaxation , 1995 .

[44]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[45]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Hua Li,et al.  Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy , 2014, NeuroImage.

[47]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .

[48]  F. Stillinger,et al.  Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids , 2005 .

[49]  E. Achten,et al.  Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. , 2008, Journal of magnetic resonance.

[50]  C. H. Neuman Spin echo of spins diffusing in a bounded medium , 1974 .

[51]  Jonathan Robert Dorfman,et al.  Long time tails in stationary random media. I. Theory , 1984 .

[52]  Igor Sersa,et al.  Velocity autocorrelation spectra of fluid in porous media measured by the CPMG sequence and constant magnetic field gradient. , 2007, Magnetic resonance imaging.

[53]  Dmitry S. Novikov,et al.  DEGENERATION WITH DIFFUSION MRI , 2013 .

[54]  David J. Bergman,et al.  Self diffusion of nuclear spins in a porous medium with a periodic microstructure , 1995 .

[55]  Iwao Kanno,et al.  Systematic changes to the apparent diffusion tensor of in vivo rat brain measured with an oscillating-gradient spin-echo sequence , 2013, NeuroImage.

[56]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[57]  P. Marko,et al.  ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES , 2008 .

[58]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[59]  Salvatore Torquato,et al.  Publisher's Note: Local density fluctuations, hyperuniformity, and order metrics [Phys. Rev. E 68, 041113 (2003)] , 2003 .

[60]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[61]  Schwartz,et al.  Surface relaxation and the long-time diffusion coefficient in porous media: Periodic geometries. , 1994, Physical review. B, Condensed matter.

[62]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[63]  J. Gore,et al.  Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain , 2003, Magnetic resonance in medicine.

[64]  J. Helpern,et al.  Monte Carlo study of a two‐compartment exchange model of diffusion , 2010, NMR in biomedicine.

[65]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.