Modelling, Reduction and Analysis of Markov Automata (extended version)

Markov automata (MA) constitute an expressive continuous-time compositional modelling formalism. They appear as semantic backbones for engineering frameworks including dynamic fault trees, Generalised Stochastic Petri Nets, and AADL. Their expressive power has thus far precluded them from effective analysis by probabilistic (and statistical) model checkers, stochastic game solvers, or analysis tools for Petri net-like formalisms. This paper presents the foundations and underlying algorithms for efficient MA modelling, reduction using static analysis, and most importantly, quantitative analysis. We also discuss implementation pragmatics of supporting tools and present several case studies demonstrating feasibility and usability of MA in practice.

[1]  Lijun Zhang,et al.  Concurrency and Composition in a Stochastic World , 2010, CONCUR.

[2]  Mariëlle Stoelinga,et al.  Efficient Modelling and Generation of Markov Automata (extended version) , 2012 .

[3]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[4]  Luca de Alfaro,et al.  Computing Minimum and Maximum Reachability Times in Probabilistic Systems , 1999, CONCUR.

[5]  Zohar Manna,et al.  Formal verification of probabilistic systems , 1997 .

[6]  Jaco van de Pol,et al.  State Space Reduction of Linear Processes Using Control Flow Reconstruction , 2009, ATVA.

[7]  Joost-Pieter Katoen GSPNs Revisited: Simple Semantics and New Analysis Algorithms , 2012, 2012 12th International Conference on Application of Concurrency to System Design.

[8]  Joost-Pieter Katoen,et al.  Efficient Modelling and Generation of Markov Automata , 2012, CONCUR.

[9]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[10]  Joost-Pieter Katoen,et al.  A linear process-algebraic format with data for probabilistic automata , 2012, Theor. Comput. Sci..

[11]  Holger Hermanns,et al.  Model Checking Algorithms for Markov Automata , 2012, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[12]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[13]  Holger Hermanns,et al.  Towards Performance Prediction of Compositional Models in Industrial GALS Designs , 2009, CAV.

[14]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[15]  William H. Sanders,et al.  Stochastic Activity Networks: Structure, Behavior, and Application , 1985, PNPM.

[16]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[17]  Joost-Pieter Katoen,et al.  Safety, Dependability and Performance Analysis of Extended AADL Models , 2011, Comput. J..

[18]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[19]  Luca de Alfaro,et al.  How to Specify and Verify the Long-Run Average Behavior of Probabilistic Systems , 1998, LICS.

[20]  Krishnendu Chatterjee,et al.  Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification , 2011, SODA '11.

[21]  D. Vere-Jones Markov Chains , 1972, Nature.

[22]  Matthias Kuntz,et al.  Evaluating repair strategies for a water-treatment facility using Arcade , 2010, 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN).

[23]  Joost-Pieter Katoen,et al.  Quantitative Timed Analysis of Interactive Markov Chains , 2012, NASA Formal Methods.

[24]  Matthew Hennessy,et al.  On the semantics of Markov automata , 2011, Inf. Comput..

[25]  Joost-Pieter Katoen,et al.  Delayed Nondeterminism in Continuous-Time Markov Decision Processes , 2009, FoSSaCS.

[26]  Mark Timmer SCOOP: A Tool for SymboliC Optimisations of Probabilistic Processes , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[27]  John N. Tsitsiklis,et al.  An Analysis of Stochastic Shortest Path Problems , 1991, Math. Oper. Res..

[28]  Lijun Zhang,et al.  Model Checking Interactive Markov Chains , 2010, TACAS.

[29]  Joost-Pieter Katoen,et al.  Beyond Memoryless Distributions: Model Checking Semi-Markov Chains , 2001, PAPM-PROBMIV.

[30]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[31]  Mandyam M. Srinivasan,et al.  Nondeterministic polling systems , 1991 .