An Extreme Value Theory for Sequence Matching

On considere des suites finies X 1 ,X 2 ...X m et Y 1 ,Y 2 ...Y m ou les lettres {X i } et {Y i } sont choisies i.i.d. sur un alphabet denombrable avec p=P{X 1 =Y 1 }∈(0,1). On etudie la distribution de la plus longue sequence contigue de couples entre les X et les Y, avec au plus k mauvais couplages

[1]  Michael S. Waterman,et al.  Matching rectangles in d-dimensions: Algorithms and laws of large numbers , 1985 .

[2]  Imre Csiszár,et al.  Topics in Information Theory , 1976 .

[3]  F. Sanger,et al.  Nucleotide sequence of bacteriophage φX174 DNA , 1977, Nature.

[4]  G. S. Watson,et al.  Extreme Values in Samples from $m$-Dependent Stationary Stochastic Processes , 1954 .

[5]  Michael S. Waterman,et al.  Critical Phenomena in Sequence Matching , 1985 .

[6]  Leonidas J. Guibas,et al.  Periods in Strings , 1981, J. Comb. Theory, Ser. A.

[7]  L. J. Korn,et al.  New approaches for computer analysis of nucleic acid sequences. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R F Doolittle,et al.  Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. , 1983, Science.

[9]  Michael S. Waterman,et al.  An extreme value theory for long head runs , 1986 .

[10]  Temple F. Smith,et al.  The statistical distribution of nucleic acid similarities. , 1985, Nucleic acids research.

[11]  Andrew Odlyzko,et al.  Long repetitive patterns in random sequences , 1980 .

[12]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[13]  Michael S. Waterman,et al.  General methods of sequence comparison , 1984 .

[14]  F. Sanger,et al.  Nucleotide sequence of bacteriophage lambda DNA. , 1982, Journal of molecular biology.