Lidar plots — a new large-area data collection option: context, concepts, and case study

Forests are an important global resource, playing key roles in both the environment and the economy. The implementation of quality national monitoring programs is required for the generation of robust national statistics, which in turn support global reporting. Conventional monitoring initiatives based on samples of field plots have proven robust but are difficult and costly to implement and maintain, especially for large jurisdictions or where access is difficult. To address this problem, air photo- and satellite-based large area mapping and monitoring programs have been developed; however, these programs also require ground measurements for calibration and validation. To mitigate this need for ground plot data we propose the collection and integration of light detection and ranging (lidar) based plot data. Lidar enables accurate measures of vertical forest structure, including canopy height, volume, and biomass. Rather than acquiring wall-to-wall lidar coverage, we propose the acquisition of a sample of scanned lidar transects to estimate conditions over large areas. Given an appropriate sampling framework, statistics can be generated from the lidar plots extracted from the transects. In other instances, the lidar plots may be treated similar to ground plots, providing locally relevant information that can be used independently or integrated with other data sources, including optical remotely sensed data. In this study we introduce the concept of “lidar plots” to support forest inventory and scientific applications, particularly for large areas. Many elements must be considered when planning a transect-based lidar survey, including survey design, flight and sensor parameters, acquisition considerations, mass data processing, and database development. We present a case study describing the acquisition of over 25 000 km of lidar data in Canada's boreal forests in the summer of 2010. The survey, which included areas of managed and unmanaged forests, resulted in the production of more than 17 million 25 × 25 m lidar plots with first returns greater than 2 m in height. We conclude with insights gained from the case study and recommendations for future surveys.

[1]  A. Montaghi Effect of scanning angle on vegetation metrics derived from a nationwide Airborne Laser Scanning acquisition , 2013 .

[2]  Ross Nelson,et al.  How did we get here? An early history of forestry lidar1 , 2013 .

[3]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[4]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[5]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[6]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[7]  Michael A. Wulder,et al.  Post-Fire Canopy Height Recovery in Canada's Boreal Forests Using Airborne Laser Scanner (ALS) , 2012, Remote. Sens..

[8]  T. Nord-Larsen,et al.  Estimation of forest resources from a country wide laser scanning survey and national forest inventory data , 2012 .

[9]  Gang Chen,et al.  Article in Press G Model International Journal of Applied Earth Observation and Geoinformation a Geobia Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: a Case Study in Quebec, Canada , 2022 .

[10]  Natascha Kljun,et al.  Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data , 2012 .

[11]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[12]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[13]  M. Herold,et al.  Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+ , 2011, Carbon balance and management.

[14]  S. Goetz The lost promise of DESDynI , 2011 .

[15]  M. Lefsky,et al.  Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar , 2011 .

[16]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[17]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[18]  Jacob Strunk,et al.  Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .

[19]  G. Hay,et al.  An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA , 2011 .

[20]  Thomas Hilker,et al.  Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Jeffrey G. Masek,et al.  Using ICESat’s Geoscience Laser Altimeter System (GLAS) to assess large-scale forest disturbance caused by Hurricane Katrina , 2011 .

[22]  Matthew C. Hansen,et al.  The global Landsat imagery database for the FAO FRA remote sensing survey , 2011, Int. J. Digit. Earth.

[23]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[24]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[25]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[26]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[27]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[28]  Thomas Nord-Larsen,et al.  Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data , 2010 .

[29]  N. Coops,et al.  Integration of LIDAR and digital aerial imagery for detailed estimates of lodgepole pine (Pinus contorta) volume killed by mountain pine beetle (Dendroctonus ponderosae). , 2010 .

[30]  R. McRoberts,et al.  Comparisons of National Forest Inventories , 2010 .

[31]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[32]  Ronald E. McRoberts,et al.  Comprar National Forest Inventories · Pathways for Common Reporting | Tomppo, Erkki | 9789048132324 | Springer , 2010 .

[33]  Kerrie Mengersen,et al.  Motivation, development and validation of a new spectral greenness index: a spectral dimension related to foliage projective cover , 2010 .

[34]  Erkki Tomppo,et al.  A report to the food and agriculture organization of the united nations (FAO) in support of sampling study for National Forestry Resources Monitoring and Assessment (NAFORMA) in Tanzania , 2010 .

[35]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[36]  Gregory P. Asner,et al.  Tropical forest carbon assessment: integrating satellite and airborne mapping approaches , 2009 .

[37]  E. Næsset,et al.  Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data , 2009 .

[38]  Nicholas C. Coops,et al.  Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing , 2009 .

[39]  Joanne C. White,et al.  Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery , 2009 .

[40]  P. Gessler,et al.  Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA , 2009 .

[41]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[42]  Trista M. Patterson,et al.  Ecosystem services: Foundations, opportunities, and challenges for the forest products sector , 2009 .

[43]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[44]  J. A. Trofymow,et al.  CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards , 2009 .

[45]  E. Næsset Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data , 2009 .

[46]  C. Hopkinson,et al.  Testing LiDAR models of fractional cover across multiple forest ecozones , 2009 .

[47]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[48]  Peter Scarth,et al.  Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery , 2009 .

[49]  Terje Gobakken,et al.  Sampling and Mapping Forest Volume and Biomass Using Airborne LIDARs , 2009 .

[50]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[51]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[52]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[53]  H. Andersen,et al.  A Comparison of Statistical Methods for Estimating Forest Biomass from Light Detection and Ranging Data , 2008 .

[54]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[55]  Petteri Packalen,et al.  Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area , 2008 .

[56]  Ronald J. Hall,et al.  The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets , 2008 .

[57]  Erik Næsset,et al.  Using airborne laser scanning to monitor tree migration in the boreal–alpine transition zone , 2007 .

[58]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[59]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .

[60]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[61]  Joanne C. White,et al.  National circumstances in the international circumboreal community , 2007 .

[62]  Robert C. Parker,et al.  Stratified Light Detection and Ranging Double-Sample Forest Inventory , 2007 .

[63]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[64]  E. Næsset,et al.  Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest , 2006 .

[65]  Laura Chasmer,et al.  Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns , 2006 .

[66]  S. Reutebuch,et al.  A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods , 2006 .

[67]  Nicholas C. Coops,et al.  Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .

[68]  Scott D. Roberts,et al.  LiDAR A new tool for forest measurements , 2006 .

[69]  Laura Chasmer,et al.  Towards a universal lidar canopy height indicator , 2006 .

[70]  Simo Poso Change Monitoring with Permanent Sample Plots , 2006 .

[71]  E. Næsset,et al.  Weibull and percentile models for lidar-based estimation of basal area distribution , 2005 .

[72]  Erik Næsset,et al.  Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data , 2005 .

[73]  K. Mengersen,et al.  Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species , 2005 .

[74]  M. Gillis,et al.  Monitoring Canada's forests: The National Forest Inventory , 2005 .

[75]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[76]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[77]  Ross Nelson,et al.  Measuring biomass and carbon in delaware using an airborne profiling LIDAR , 2004 .

[78]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[79]  S. Ustin,et al.  Generation of crown bulk density for Pinus sylvestris L. from lidar , 2004 .

[80]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[81]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[82]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[83]  Erik Næsset,et al.  Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser , 2004 .

[84]  W. Kurz,et al.  National level forest monitoring and modeling in Canada , 2004 .

[85]  J. Hyyppä,et al.  Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions , 2004 .

[86]  Robert C. Parker,et al.  An Application of LiDAR in a Double-Sample Forest Inventory , 2004 .

[87]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[88]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[89]  R. Nelson,et al.  A Multiple Resource Inventory of Delaware Using Airborne Laser Data , 2003 .

[90]  Carl Seielstad,et al.  Using airborne laser altimetry to determine fuel models for estimating fire behavior , 2003 .

[91]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[92]  F. Wagner,et al.  Good Practice Guidance for Land Use, Land-Use Change and Forestry , 2003 .

[93]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[94]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[95]  E. Næsset,et al.  Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve , 2002 .

[96]  Andrea Perlis,et al.  Global forest resources assessment 2000 : main report , 2001 .

[97]  J. Gove,et al.  Forest inventory , 2001 .

[98]  F. W. Bell,et al.  Application of large- and medium-scale aerial photographs to forest vegetation management: a case study. , 2000 .

[99]  R. Dubayah,et al.  Lidar Remote Sensing for Forestry , 2000, Journal of Forestry.

[100]  George M. Furnival,et al.  Forest Survey Sampling Designs: A History , 1999, Journal of Forestry.

[101]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[102]  Werner A. Kurz,et al.  A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR , 1999 .

[103]  Michael A. Wulder,et al.  Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters , 1998 .

[104]  S. Magnussen,et al.  Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators , 1998 .

[105]  T. M. Webb,et al.  The Carbon Budget of the Canadian Forest Sector: Phase I , 1993, Simul..

[106]  A. H. Aldred,et al.  Forest regeneration appraisal with large-scale aerial photographs , 1992 .

[107]  W. Krabill,et al.  Gross-merchantable timber volume estimation using an airborne lidar system , 1986 .

[108]  R. Hall,et al.  Practical applications of remote sensing to timber inventory. Proceedings of a Workshop held September 26-28, 1979, in Edmonton, Alberta , 1980 .

[109]  A. Aldred,et al.  A forest inventory in the Yukon using large scale photo sampling techniques , 1979 .

[110]  J. K. Hall,et al.  APPLICATION OF LARGE-SCALE PHOTOGRAPHY TO A FOREST INVENTORY , 1975 .

[111]  U. Nielsen TESTS OF AN AIRBORNE TILT-INDICATOR , 1974 .

[112]  C. Bickford The Sampling Design Used in the Forest Survey of the Northeast , 1952 .

[113]  Y. Seng Historical Survey of the Development of Sampling Theories and Practice , 1951 .

[114]  S. Losee AIR PHOTOGRAPHS AND FOREST SITES: I. MAPPING METHODS ILLUSTRATED ON AN AREA OF THE PETAWAWA FOREST EXPERIMENT STATION , 1942 .