On Mixed Linear Layouts of Series-Parallel Graphs

A mixed s-stack q-queue layout of a graph consists of a linear order of its vertices and of a partition of its edges into s stacks and q queues, such that no two edges in the same stack cross and no two edges in the same queue nest. In 1992, Heath and Rosenberg conjectured that every planar graph admits a mixed 1-stack 1-queue layout. Recently, Pupyrev disproved this conjectured by demonstrating a planar partial 3-tree that does not admit a 1-stack 1-queue layout. In this note, we strengthen Pupyrev's result by showing that the conjecture does not hold even for 2-trees, also known as series-parallel graphs.

[1]  Vida Dujmovic Graph layouts via layered separators , 2015, J. Comb. Theory, Ser. B.

[2]  Patrice Ossona de Mendez,et al.  A left-first search algorithm for planar graphs , 1995, Discret. Comput. Geom..

[3]  Paul C. Kainen,et al.  Extension of a theorem of Whitney , 2007, Appl. Math. Lett..

[4]  Pat Morin,et al.  Planar Graphs have Bounded Queue-Number , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[5]  Mihalis Yannakakis,et al.  Planar Graphs that Need Four Pages , 2020, J. Comb. Theory, Ser. B.

[6]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[7]  Michael Hoffmann,et al.  Triconnected Planar Graphs of Maximum Degree Five are Subhamiltonian , 2019, ESA.

[8]  David Eppstein,et al.  Track Layouts, Layered Path Decompositions, and Leveled Planarity , 2018, Algorithmica.

[9]  Emilio Di Giacomo,et al.  1-Page and 2-Page Drawings with Bounded Number of Crossings per Edge , 2015, IWOCA.

[10]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[11]  Michael A. Bekos,et al.  Four Pages Are Indeed Necessary for Planar Graphs , 2020, J. Comput. Geom..

[12]  Michael A. Bekos,et al.  Two-Page Book Embeddings of 4-Planar Graphs , 2014, Algorithmica.

[13]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[14]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[15]  Michael A. Bekos,et al.  On Dispersable Book Embeddings , 2018, WG.

[16]  Günter Ewald Hamiltonian circuits in simplicial complexes , 1973 .

[17]  Vida Dujmovic,et al.  Stack and Queue Layouts via Layered Separators , 2016, GD.

[18]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[19]  Michael A. Bekos,et al.  Queue Layouts of Planar 3-Trees , 2018, Algorithmica.

[20]  C. E. Veni Madhavan,et al.  Stack and Queue Number of 2-Trees , 1995, COCOON.

[21]  Sergey Pupyrev Mixed Linear Layouts of Planar Graphs , 2017, Graph Drawing.

[22]  Weihua Yang,et al.  Embedding planar 5-graphs in three pages , 2020, Discret. Appl. Math..

[23]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[24]  Veit Wiechert,et al.  On the Queue-Number of Graphs with Bounded Tree-Width , 2016, Electron. J. Comb..

[25]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[26]  János Pach,et al.  On the Queue Number of Planar Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[27]  Martin Nöllenburg,et al.  Mixed Linear Layouts: Complexity, Heuristics, and Experiments , 2019, Graph Drawing.

[28]  Lenwood S. Heath Embedding Planar Graphs in Seven Pages , 1984, FOCS.

[29]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..