A LAN based Neyman smooth test for Pareto distributions

Abstract The Pareto distribution is found in a large number of real world situations and is also a well-known model for extreme events. In the spirit of Neyman [1937. Smooth tests for goodness of fit. Skand. Aktuarietidskr. 20, 149–199] and Thomas and Pierce [1979. Neyman's smooth goodness-of-fit test when the hypothesis is composite. J. Amer. Statist. Assoc. 74, 441–445], we propose a smooth goodness of fit test for the Pareto distribution family which is motivated by LeCam's theory of local asymptotic normality (LAN). We establish the behavior of the associated test statistic firstly under the null hypothesis that the sample follows a Pareto distribution and secondly under local alternatives using the LAN framework. Finally, simulations are provided in order to study the finite sample behavior of the test statistic.

[1]  A. H. Moore,et al.  Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location and scale parameters , 1992 .

[2]  P. Fisk THE GRADUATION OF INCOME DISTRIBUTIONS , 1961 .

[3]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[4]  B. Arnold,et al.  Bayesian Estimation and Prediction for Pareto Data , 1989 .

[5]  J. Neyman »Smooth test» for goodness of fit , 1937 .

[6]  John C. W. Rayner,et al.  Neyman-type smooth tests for location-scale families , 1986 .

[7]  Anthony C. Davison,et al.  Modelling Excesses over High Thresholds, with an Application , 1984 .

[8]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[9]  Vartan Choulakian,et al.  Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.

[10]  H. J. Malik Estimation of the parameters of thePareto distribution , 1970 .

[11]  Michael Thomas,et al.  Statistical Analysis of Extreme Values , 2008 .

[12]  John C. W. Rayner,et al.  Smooth tests of goodness of fit : an overview , 1990 .

[13]  Le Cam,et al.  Locally asymptotically normal families of distributions : certain approximations to families of distributions & thier use in the theory of estimation & testing hypotheses , 1960 .

[14]  Olivier Thas,et al.  Smooth tests of goodness of fit , 1989 .

[15]  A. Hadi,et al.  Fitting the Generalized Pareto Distribution to Data , 1997 .

[16]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[17]  J. Pfanzagl Parametric Statistical Theory , 1994 .

[18]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[19]  Wilbert C.M. Kallenberg,et al.  Data driven smooth tests for composite hypotheses , 1997 .

[20]  Kenneth J. Kopecky,et al.  Efficiency of Smooth Goodness-of-Fit Tests , 1979 .

[21]  Jón Dańıelsson,et al.  Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .

[22]  Gunnar Gustafson,et al.  The use of the Pareto distribution for fracture transmissivity assessment , 2006 .

[23]  C. Quesenberry,et al.  Power studies of tests for uniformity, II , 1979 .

[24]  Donald A. Pierce,et al.  Neyman's Smooth Goodness-of-Fit Test When the Hypothesis Is Composite , 1979 .

[25]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .