High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution.

[1]  A. Knoll,et al.  Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China. , 2007, Lethaia.

[2]  E. Davidson,et al.  Sea urchin Forkhead gene family: phylogeny and embryonic expression. , 2006, Developmental biology.

[3]  E. Davidson,et al.  Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. , 2006, Developmental biology.

[4]  E. Davidson,et al.  Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. , 2006, Developmental biology.

[5]  G. Wessel,et al.  Oogenesis: single cell development and differentiation. , 2006, Developmental biology.

[6]  R. F. Gray,et al.  The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. , 2006, Developmental biology.

[7]  M. Arnone,et al.  Genetic organization and embryonic expression of the ParaHox genes in the sea urchin S. purpuratus: insights into the relationship between clustering and colinearity. , 2006, Developmental biology.

[8]  M. Arnone,et al.  Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus). , 2006, Developmental biology.

[9]  Eric H Davidson,et al.  The Transcriptome of the Sea Urchin Embryo , 2006, Science.

[10]  E. Davidson,et al.  Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China , 2006, Science.

[11]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[12]  Eric H Davidson,et al.  Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network. , 2006, Developmental biology.

[13]  M. Levine,et al.  Genomic regulatory networks and animal development. , 2005, Developmental cell.

[14]  K. Peterson,et al.  Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  V. Schmid,et al.  Evolution of striated muscle: jellyfish and the origin of triploblasty. , 2005, Developmental biology.

[16]  Jun-yuan Chen,et al.  Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China , 2005 .

[17]  Eric H Davidson,et al.  Brn1/2/4, the predicted midgut regulator of the endo16 gene of the sea urchin embryo. , 2005, Developmental biology.

[18]  E. Davidson,et al.  Gene regulatory networks for development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Ken W. Y. Cho,et al.  Xenopus as a model system to study transcriptional regulatory networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Eric H Davidson,et al.  SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. , 2004, Developmental biology.

[22]  E. Davidson,et al.  Gene regulatory network controlling embryonic specification in the sea urchin. , 2004, Current opinion in genetics & development.

[23]  Matthew Loose,et al.  A genetic regulatory network for Xenopus mesendoderm formation. , 2004, Developmental biology.

[24]  E. Davidson,et al.  Small Bilaterian Fossils from 40 to 55 Million Years Before the Cambrian , 2004, Science.

[25]  M. L. Howard,et al.  cis-Regulatory control circuits in development. , 2004, Developmental biology.

[26]  J. Finnerty,et al.  Investigating the origins of triploblasty: `mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa) , 2004, Development.

[27]  Mark A McPeek,et al.  Estimating metazoan divergence times with a molecular clock. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Stephane Aris-Brosou,et al.  Bayesian models of episodic evolution support a late precambrian explosive diversification of the Metazoa. , 2003, Molecular biology and evolution.

[29]  Aaron Klug,et al.  Crystal structure of a zinc-finger–RNA complex reveals two modes of molecular recognition , 2003, Nature.

[30]  Eric H Davidson,et al.  Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. , 2003, Developmental biology.

[31]  E. Davidson,et al.  Transcriptional regulatory cascades in development: Initial rates, not steady state, determine network kinetics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Eric H Davidson,et al.  The last common bilaterian ancestor. , 2002, Development.

[33]  Eric H Davidson,et al.  Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. , 2002, Developmental biology.

[34]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[35]  R. Angerer,et al.  Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. , 2001, Development.

[36]  S. Shimeld,et al.  Identification of conserved C2H2 zinc-finger gene families in the Bilateria , 2001, Genome Biology.

[37]  E. Davidson,et al.  Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. , 2001, Development.

[38]  P. Wright,et al.  Zinc finger proteins: new insights into structural and functional diversity. , 2001, Current opinion in structural biology.

[39]  J. Banner,et al.  Evolution of the Sr and C Isotope Composition of Cambrian Oceans , 2000 .

[40]  E. Davidson,et al.  Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. , 2000, Development.

[41]  D. Bottjer,et al.  The Cambrian Substrate Revolution , 2000 .

[42]  E. Davidson,et al.  Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Davidson,et al.  Expression of the Hox gene complex in the indirect development of a sea urchin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[45]  E. Davidson,et al.  Set-aside cells in maximal indirect development: evolutionary and developmental significance. , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[46]  E. Davidson,et al.  How embryos work: a comparative view of diverse modes of cell fate specification. , 1990, Development.

[47]  R. Britten,et al.  Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo. , 1988, Genes & development.

[48]  Eric H. Davidson,et al.  Gene activity in early development , 1968 .