CAPE: combinatorial absolute phase estimation.

An absolute phase estimation algorithm for interferometric applications is introduced. The approach is Bayesian. Besides coping with the 2pi-periodic sinusoidal nonlinearity in the observations, the proposed methodology assumes a first-order Markov random field prior and a maximum a posteriori probability (MAP) viewpoint. For computing the MAP solution, we provide a combinatorial suboptimal algorithm that involves a multiprecision sequence. In the coarser precision, it unwraps the phase by using, essentially, the previously introduced PUMA algorithm [IEEE Trans. Image Proc.16, 698 (2007)], which blindly detects discontinuities and yields a piecewise smooth unwrapped phase. In the subsequent increasing precision iterations, the proposed algorithm denoises each piecewise smooth region, thanks to the previously detected location of the discontinuities. For each precision, we map the problem into a sequence of binary optimizations, which we tackle by computing min-cuts on appropriate graphs. This unified rationale for both phase unwrapping and denoising inherits the fast performance of the graph min-cuts algorithms. In a set of experimental results, we illustrate the effectiveness of the proposed approach.

[1]  K. Murota Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .

[2]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Pushmeet Kohli,et al.  Dynamic Graph Cuts for Efficient Inference in Markov Random Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Kazuo Murota,et al.  On Steepest Descent Algorithms for Discrete Convex Functions , 2003, SIAM J. Optim..

[5]  K Itoh,et al.  Analysis of the phase unwrapping algorithm. , 1982, Applied optics.

[6]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[7]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[8]  José Dias,et al.  The Z π M Algorithm for Interferometric Image Reconstruction in SAR / SAS , 2001 .

[9]  Jaakko Astola,et al.  Absolute phase estimation: adaptive local denoising and global unwrapping. , 2008, Applied optics.

[10]  Salah Karout,et al.  Two-dimensional phase unwrapping , 2007 .

[11]  Sudhakar M. Pandit,et al.  Data-dependent systems methodology for noise-insensitive phase unwrapping in laser interferometric surface characterization , 1994 .

[12]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  J. F. Greenleaf,et al.  Magnetic resonance elastography: Non-invasive mapping of tissue elasticity , 2001, Medical Image Anal..

[14]  Louis A. Romero,et al.  Minimum Lp-norm two-dimensional phase unwrapping , 1996 .

[15]  V. Kolmogorov Primal-dual Algorithm for Convex Markov Random Fields , 2005 .

[16]  David L. Fried,et al.  Adaptive optics wave function reconstruction and phase unwrapping when branch points are present , 2001 .

[17]  伊理 正夫,et al.  Network flow, transportation and scheduling : theory and algorithms , 1969 .

[18]  Thomas J. Flynn,et al.  TWO-DIMENSIONAL PHASE UNWRAPPING WITH MINIMUM WEIGHTED DISCONTINUITY , 1997 .

[19]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jérôme Darbon,et al.  Global optimization for first order Markov Random Fields with submodular priors , 2008, Discret. Appl. Math..

[21]  Jaakko Astola,et al.  Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data , 2008, IEEE Transactions on Image Processing.

[22]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[23]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[24]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[25]  José M. N. Leitão,et al.  The ZπM algorithm: a method for interferometric image reconstruction in SAR/SAS , 2002, IEEE Trans. Image Process..

[26]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[27]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[28]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[29]  José M. N. Leitão,et al.  Absolute phase image reconstruction: a stochastic nonlinear filtering approach , 1998, IEEE Trans. Image Process..

[30]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[31]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  J. M. Huntley Noise-immune phase unwrapping algorithm. , 1989, Applied optics.

[33]  R. Steele Optimization , 2005 .

[34]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[35]  Vladimir Kolmogorov,et al.  New algorithms for the dual of the convex cost network flow problem with application to computer vision , 2007 .

[36]  Rudolf Stollberger,et al.  Automated unwrapping of MR phase images applied to BOLD MR‐venography at 3 Tesla , 2003, Journal of magnetic resonance imaging : JMRI.

[37]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[38]  Mihai Datcu,et al.  Multiscale Bayesian height estimation from InSAR using a fractal prior , 1998, Remote Sensing.

[39]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Frans A. J. Verstraten,et al.  How big is a Gabor patch, and why should we care? , 1997 .

[41]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[42]  José M. Bioucas-Dias,et al.  Discontinuity Preserving Phase Unwrapping Using Graph Cuts , 2005, EMMCVPR.

[43]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[44]  Eric V. Denardo,et al.  Flows in Networks , 2011 .

[45]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Todd M. Venema,et al.  Optical phase unwrapping in the presence of branch points. , 2008, Optics express.

[47]  J. Hadamard Sur les problemes aux derive espartielles et leur signification physique , 1902 .

[48]  Curtis W. Chen Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry , 2001 .

[49]  Mariano Rivera,et al.  Quadratic regularization functionals for phase unwrapping , 1995 .

[50]  Jérôme Darbon Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .

[51]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2005, IEEE Transactions on Image Processing.

[52]  Anthony J. Devaney,et al.  Diffraction tomographic reconstruction from intensity data , 1992, IEEE Trans. Image Process..

[53]  Mariano Rivera,et al.  Half-quadratic cost functions for phase unwrapping. , 2004, Optics letters.

[54]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Dorit S. Hochbaum,et al.  Solving the Convex Cost Integer Dual Network Flow Problem , 1999, Manag. Sci..