A Mathematica Notebook for Computing the Homology of Iterated Products of Groups
暂无分享,去创建一个
Víctor Álvarez | José Ándrés Armario | María Dolores Frau | Pedro Real Jurado | V. Álvarez | J. Armario | M. Frau | P. Real
[1] Víctor Álvarez,et al. Comparison Maps for Relatively Free Resolutions , 2006, CASC.
[2] Julio Jesús Rubio García. Integrating functional programming and symbolic computation , 1996 .
[3] J. Huebschmann. Cohomology of metacyclic groups , 1991 .
[4] Víctor Álvarez,et al. A Genetic Algorithm for Cocyclic Hadamard Matrices , 2006, AAECC.
[5] Pedro Real,et al. Homological perturbation theory and associativity , 2000 .
[6] Saunders MacLane,et al. On the Groups H(Π, n), II: Methods of Computation , 1954 .
[7] Larry A. Lambe,et al. Computing Resolutions Over Finite p-Groups , 2001 .
[8] Julio Jesús Rubio García. Erratum to “Integrating functional programming and symbolic computation” [Math. Comp. Simul. 42 (1996) 467–473] , 1997 .
[9] Francis Sergeraert,et al. The Computability Problem in Algebraic Topology , 1994 .
[10] L. Lambe. Homological Perturbation Theory Hochschild Homology and Formal Groups , 1992 .
[11] L. Lambe,et al. Applications of perturbation theory to iterated fibrations , 1987 .
[12] J. Huebschmann. Cohomology of nilpotent groups of class 2 , 1989 .
[13] Samuel Eilenberg,et al. On the Groups H(Π, n), I , 1953 .
[14] Nobuki Takayama,et al. Algebra,Geometry and Software Systems , 2003 .
[15] Jean-Guillaume Dumas,et al. Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms , 2003, Algebra, Geometry, and Software Systems.