Biocrystallography: Past, present, future

The evolution of biocrystallography from the pioneers' time to the present era of global biology is presented in relation to the development of methodological and instrumental advances for molecular sample preparation and structure elucidation over the last 6 decades. The interdisciplinarity of the field that generated cross‐fertilization between physics‐ and biology‐focused themes is emphasized. In particular, strategies to circumvent the main bottlenecks of biocrystallography are discussed. They concern (i) the way macromolecular targets are selected, designed, and characterized, (ii) crystallogenesis and how to deal with physical and biological parameters that impact crystallization for growing and optimizing crystals, and (iii) the methods for crystal analysis and 3D structure determination. Milestones that have marked the history of biocrystallography illustrate the discussion. Finally, the future of the field is envisaged. Wide gaps of the structural space need to be filed and membrane proteins as well as intrinsically unstructured proteins still constitute challenging targets. Solving supramolecular assemblies of increasing complexity, developing a “4D biology” for decrypting the kinematic changes in macromolecular structures in action, integrating these structural data in the whole cell organization, and deciphering biomedical implications will represent the new frontiers.

[1]  D. Moras,et al.  Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp) , 1991, Science.

[2]  R. Giegé,et al.  Diagnostic of precipitant for biomacromolecule crystallization by quasi-elastic light-scattering. , 1990, Journal of molecular biology.

[3]  B. Lorber,et al.  Crystallogenesis Trends of Free and Liganded Aminoacyl-tRNA Synthetases† , 2008 .

[4]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[5]  John R. Helliwell,et al.  Overview and new developments in softer X‐ray (2Å < λ < 5Å) protein crystallography , 2004 .

[6]  J. Hajdu,et al.  Catalysis in enzyme crystals. , 1988, Trends in biochemical sciences.

[7]  M Gerstein,et al.  Structural proteomics: prospects for high throughput sample preparation. , 2000, Progress in biophysics and molecular biology.

[8]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[9]  S. Marzi,et al.  A structural view of translation initiation in bacteria , 2009, Cellular and Molecular Life Sciences.

[10]  Andreas Hoenger,et al.  Probing the macromolecular organization of cells by electron tomography. , 2009, Current opinion in cell biology.

[11]  A. D'arcy,et al.  An automated microseed matrix-screening method for protein crystallization. , 2007, Acta crystallographica. Section D, Biological crystallography.

[12]  C. Carter E pluribus tres: the 2009 nobel prize in chemistry. , 2009, Structure.

[13]  M. Kapoor,et al.  Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality , 2010, Nature Structural &Molecular Biology.

[14]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[15]  A. Frangakis,et al.  The molecular architecture of cadherins in native epidermal desmosomes , 2007, Nature.

[16]  R. Stevens,et al.  In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels. , 2008, Acta crystallographica. Section D, Biological crystallography.

[17]  A. D'arcy,et al.  The advantages of using a modified microbatch method for rapid screening of protein crystallization conditions. , 2003, Acta crystallographica. Section D, Biological crystallography.

[18]  Thomas C Terwilliger,et al.  Lessons from structural genomics. , 2009, Annual review of biophysics.

[19]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[20]  L. Pauling,et al.  Configurations of Polypeptide Chains With Favored Orientations Around Single Bonds: Two New Pleated Sheets. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Olof Svensson,et al.  Automation of macromolecular crystallography beamlines. , 2005, Progress in biophysics and molecular biology.

[22]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[23]  B. Lorber,et al.  Crystal structure of human mitochondrial tyrosyl-tRNA synthetase reveals common and idiosyncratic features. , 2007, Structure.

[24]  R. Agrawal,et al.  Structure of a mitochondrial ribosome with minimal RNA , 2009, Proceedings of the National Academy of Sciences.

[25]  Catherine L. Worth,et al.  Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  W. Denny,et al.  CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES , 2005 .

[27]  Pawel A Penczek,et al.  Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM. , 2009, Current opinion in structural biology.

[28]  T. Schneider Synchrotron radiation: Micrometer‐sized x‐ray beams as fine tools for macromolecular crystallography , 2008, HFSP journal.

[29]  S. Cusack,et al.  A methodology and an instrument for the temperature-controlled optimization of crystal growth. , 2007, Acta crystallographica. Section D, Biological crystallography.

[30]  C. Kundrot,et al.  Microgravity and Macromolecular Crystallography , 2001 .

[31]  K. Nierhaus Nobel Prize for the elucidation of ribosome structure and insight into the translation mechanism. , 2009, Angewandte Chemie.

[32]  Jennifer L. Martin,et al.  Post-crystallization treatments for improving diffraction quality of protein crystals. , 2005, Acta crystallographica. Section D, Biological crystallography.

[33]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[34]  W. Wooster,et al.  Crystal structure of , 2005 .

[35]  M. Caffrey On the Mechanism of Membrane Protein Crystallization in Lipidic Mesophases , 2008 .

[36]  Marc-André Delsuc,et al.  Biophysical techniques for ligand screening and drug design. , 2009, Current opinion in pharmacology.

[37]  T. Steitz,et al.  Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase , 1991, Nature.

[38]  B. Lorber,et al.  Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality. , 1999, Acta crystallographica. Section D, Biological crystallography.

[39]  A. Tocilj,et al.  Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. , 1998, Acta crystallographica. Section A, Foundations of crystallography.

[40]  John R Helliwell Overview and new developments in softer X-ray (2A < lambda < 5A) protein crystallography. , 2004, Journal of synchrotron radiation.

[41]  J. Frank Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years , 2009, Quarterly Reviews of Biophysics.

[42]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[43]  J. Witz 1964: The first model for the shape of a transfer RNA molecule. An account of an unpublished small-angle X-ray scattering study. , 2003, Biochimie.

[44]  H. Muirhead,et al.  Three-dimensional Fourier Synthesis of Horse Oxyhaemoglobin at 2.8 Å Resolution : (I) X-ray Analysis , 1968, Nature.

[45]  Klaus Schulten,et al.  Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis , 2009, Proceedings of the National Academy of Sciences.

[46]  K. Holmes,et al.  Synchrotron Radiation as a Source for X-ray Diffraction , 1971, Nature.

[47]  K. Waltersson,et al.  The crystal structure of Cs[VOF3] · 12H2O , 1979 .

[48]  J. Plitzko,et al.  Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. , 2009, Current opinion in biotechnology.

[49]  Richard Giegé,et al.  Toward a more complete view of tRNA biology , 2008, Nature Structural &Molecular Biology.

[50]  F. Jurnak,et al.  Extension of the diffraction resolution of crystals. , 1994, Acta Crystallographica Section D: Biological Crystallography.

[51]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[52]  Randy J Read,et al.  Recent developments in phasing and structure refinement for macromolecular crystallography. , 2009, Current opinion in structural biology.

[53]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[54]  Antoine Royant,et al.  Advances in kinetic protein crystallography. , 2005, Current opinion in structural biology.

[55]  W William Wilson,et al.  Light scattering as a diagnostic for protein crystal growth--a practical approach. , 2003, Journal of structural biology.

[56]  M. Yamashita,et al.  A neutron crystallographic analysis of phosphate-free ribonuclease A at 1.7 A resolution. , 2009, Acta crystallographica. Section D, Biological crystallography.

[57]  D. Moras,et al.  Crystal structure of yeast tRNAAsp , 1980, Nature.

[58]  Rolf Hilgenfeld,et al.  Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs , 2003, Science.

[59]  A Hampel,et al.  Single Crystals of Transfer RNA from Formylmethionine and Phenylalanine Transfer RNA's , 1968, Science.

[60]  Sung-Hou Kim,et al.  Sparse matrix sampling: a screening method for crystallization of proteins , 1991 .

[61]  Markus G Grütter,et al.  Chaperone-assisted crystallography with DARPins. , 2008, Structure.

[62]  B. Schmitt,et al.  Performance of single-photon-counting PILATUS detector modules , 2009, Journal of synchrotron radiation.

[63]  Wilhelm Pfleging,et al.  Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. , 2009, Lab on a chip.

[64]  A. Chernov,et al.  Protein crystals and their growth. , 2003, Journal of structural biology.

[65]  Wolfgang Baumeister,et al.  The future is hybrid. , 2008, Journal of structural biology.

[66]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[67]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[68]  A. Spirin,et al.  Thermus thermophilus ribosomes for crystallographic studies. , 1991, Biochimie.

[69]  O. Nureki,et al.  Complete crystallographic analysis of the dynamics of CCA sequence addition , 2006, Nature.

[70]  Marcus Mueller,et al.  Strategies for crystallization and structure determination of very large macromolecular assemblies. , 2007, Current opinion in structural biology.

[71]  C. Abad-Zapatero Notes of a protein crystallographer: the molecular structure of evolutionary theory. , 2009, Acta crystallographica. Section D, Biological crystallography.

[72]  B. Lorber,et al.  Growth kinetics, diffraction properties and effect of agarose on the stability of a novel crystal form of Thermus thermophilus aspartyl-tRNA synthetase-1. , 2001, Acta crystallographica. Section D, Biological crystallography.

[73]  B. Lorber,et al.  The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. , 2000, Journal of molecular biology.

[74]  H. Noller Ribosomal RNA and translation. , 1991, Annual review of biochemistry.

[75]  Neer Asherie,et al.  Protein crystallization and phase diagrams. , 2004, Methods.

[76]  P. Brick,et al.  Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. , 1989, Journal of molecular biology.

[77]  J. D. Bernal,et al.  X-Ray Photographs of Crystalline Pepsin , 1934, Nature.

[78]  B. Lorber,et al.  Crystal growth of proteins, nucleic acids, and viruses in gels. , 2009, Progress in biophysics and molecular biology.

[79]  Janet Newman,et al.  Phoenito experiments: combining the strengths of commercial crystallization automation. , 2008, Acta crystallographica. Section F, Structural biology and crystallization communications.

[80]  J. García‐Ruiz,et al.  Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. , 2002, Acta crystallographica. Section D, Biological crystallography.

[81]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[82]  Eddy Arnold,et al.  Crystallography of biological macromolecules , 2001 .

[83]  Franz Rosenberger,et al.  Temperature dependence of protein solubility — determination and application to crystallization in X-ray capillaries , 1993 .

[84]  Alexander McPherson,et al.  Visualization of RNA crystal growth by atomic force microscopy , 1997, Nucleic Acids Res..

[85]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[86]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[87]  J. Abrahams,et al.  X-ray crystallographic structure determination of large asymmetric macromolecular assemblies. , 2003, Methods in enzymology.

[88]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[89]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[90]  D. Blow,et al.  Letter: Crystallization and preliminary x-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus. , 1973, Journal of molecular biology.

[91]  J. García-Ruiz,et al.  Investigations on protein crystal growth by the gel acupuncture method. , 1994, Acta crystallographica. Section D, Biological crystallography.

[92]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[93]  J. Koehn,et al.  High-Throughput Protein Production (HTPP): a review of enabling technologies to expedite protein production. , 2009, Methods in molecular biology.

[94]  D. Blow,et al.  An Automated System for Micro-Batch Protein Crystallization and Screening , 1990 .

[95]  Zaida Luthey-Schulten,et al.  On the Evolution of Structure in Aminoacyl-tRNA Synthetases , 2003, Microbiology and Molecular Biology Reviews.

[96]  M. Perutz [1]Early days of protein crystallography , 1985 .

[97]  D. N. Wilson,et al.  The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis , 2006, Cellular and Molecular Life Sciences CMLS.

[98]  David I. Stuart,et al.  Structure and functionality in flavivirus NS-proteins: Perspectives for drug design , 2010, Antiviral research.

[99]  Takashi Gojobori,et al.  Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors , 2009, BMC Structural Biology.

[100]  Thomas A Steitz,et al.  The structural basis of large ribosomal subunit function. , 2002, Annual review of biochemistry.

[101]  Gerry McDermott,et al.  Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. , 2009, Trends in cell biology.

[102]  Yoshihisa Suzuki,et al.  Protein crystallization under high pressure. , 2002, Biochimica et biophysica acta.

[103]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[104]  Camilo Aponte-Santamaría,et al.  Crystal Structure of a Yeast Aquaporin at 1.15 Å Reveals a Novel Gating Mechanism , 2009, PLoS biology.

[105]  A. Tocilj,et al.  The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[106]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[107]  A. Bashan,et al.  Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity , 2007, Proceedings of the National Academy of Sciences.

[108]  Frederic A. Fellouse,et al.  Synthetic antibodies for specific recognition and crystallization of structured RNA , 2008, Proceedings of the National Academy of Sciences.

[109]  S. Koide Engineering of recombinant crystallization chaperones. , 2009, Current opinion in structural biology.

[110]  Keiko Ikeda,et al.  The molecular organization of cypovirus polyhedra , 2007, Nature.

[111]  S. Quake,et al.  A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Elspeth Garman,et al.  'Cool' crystals: macromolecular cryocrystallography and radiation damage. , 2003, Current opinion in structural biology.

[113]  Characterization of crystals of the Hjc resolvase from Archaeoglobus fulgidus grown in gel by counter-diffusion. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[114]  F. Schluenzen,et al.  Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. , 2001, Methods.

[115]  Dino Moras,et al.  Functional insights from structures of coactivator‐associated arginine methyltransferase 1 domains , 2007, The EMBO journal.

[116]  Andrzej Joachimiak,et al.  High-throughput crystallography for structural genomics. , 2009, Current opinion in structural biology.

[117]  A. Joachimiak,et al.  Subatomic and atomic crystallographic studies of aldose reductase: implications for inhibitor binding , 2004, Cellular and Molecular Life Sciences CMLS.

[118]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[119]  M. Messerschmidt,et al.  The RATIO method for time-resolved Laue crystallography. , 2009, Journal of synchrotron radiation.

[120]  John E. Johnson,et al.  The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. , 2005, Biophysical journal.

[121]  Marc C. Morais,et al.  From structure of the complex to understanding of the biology , 2006, Acta crystallographica. Section D, Biological crystallography.