A unifying model for biclustering

A unifying biclustering model is presented for the simultaneous classification of the rows and columns of a rectangular data matrix. The model encompasses a broad range of (existing as well as to be developed) biclustering models as special cases, which all imply homogeneous data clusters on the basis of which the data can be reconstructed making use of a Sum- or Max-operator. An analysis of the objective or loss function associated with the model leads to two generic algorithmic strategies. In the discussion, we point at various possible model extensions.

[1]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[2]  David J. Hand,et al.  Short communication: Optimising k-means clustering results with standard software packages , 2005 .

[3]  Hans-Hermann Bock,et al.  Data Analysis and Information Systems , 1996 .

[4]  Hans-Hermann Bock,et al.  Two-mode clustering methods: astructuredoverview , 2004, Statistical methods in medical research.

[5]  Martin Schader,et al.  A New Algorithm for Two-Mode Clustering , 1996 .

[6]  L. Lazzeroni Plaid models for gene expression data , 2000 .

[7]  Javier Trejos,et al.  Two-mode Partitioning: Review of Methods and Application of Tabu Search , 2002 .

[8]  N. Endler,et al.  An S-R inventory of anxiousness. , 1962 .

[9]  Martin Schader,et al.  Advances in Classification and Data Analysis , 2001 .

[10]  George W. Furnas,et al.  The estimation of ultrametric and path length trees from rectangular proximity data , 1984 .

[11]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[12]  Gérard Govaert,et al.  Clustering with block mixture models , 2003, Pattern Recognit..

[13]  P. Boeck,et al.  Hierarchical classes: Model and data analysis , 1988 .

[14]  Jan Schepers,et al.  A unifying model involving a categorical and/or dimensional reduction for multimode data , 2007, Comput. Stat. Data Anal..

[15]  N. Endler,et al.  Sources of behavioral variance as measured by the S-R inventory of anxiousness. , 1966, Psychological bulletin.

[16]  Douglas Steinley,et al.  Local optima in K-means clustering: what you don't know may hurt you. , 2003, Psychological methods.

[17]  Wojtek J. Krzanowski,et al.  Improved biclustering of microarray data demonstrated through systematic performance tests , 2005, Comput. Stat. Data Anal..

[18]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[19]  Vichi Maurizio Double k-means Clustering for Simultaneous Classification of Objects and Variables , 2001 .