Analysis, measurement and control of a new disc-type ultrasonic motor system

Abstract This paper first presents an equivalent circuit model of a new disc-type ultrasonic motor and discusses its applications in evaluation of the stator’s frequency characteristics. The equivalent circuit analysis is based on the principle of ultrasonic motor operations and is conducted from the viewpoint of the mechanic vibration of the piezoelectric ceramic disk. Furthermore, because drift of the piezostator characteristics will cause variation of the motor speed, a controller is thus necessary in order to produce a constant output speed. In this research, the speed control scheme is implemented by using current modulation, so the revolutional speed will be kept constant. Meanwhile, the frequency behaviour of the proposed motor and its consequences on speed control scheme are discussed. Finally, a 3-D mechanical element with an extra electrical degree of freedom is employed to simulate the dynamic vibration modes of the linear piezoelectric, mechanical and piezoelectro-mechanic behaviours of a metal disc structure embedded with a piezoelectric actuator. In piezoelectric finite element formulation, a discretized equation of motion is developed and solved by using the integration scheme to explain why an adaptive boundary condition, a simple support condition with three non-equal-triangular (120°–90°–150°) fixed points near the edge for the mechanical design of a new disc-type piezoelectric ultrasonic stator, is defined so that a lateral elliptical motion of the contact point between stator and rotor can be realized for driving the rotor.

[1]  A. Kumada,et al.  A Piezoelectric Ultrasonic Motor , 1985 .

[2]  Tomonobu Senjyu,et al.  Adjustable speed control of ultrasonic motors by adaptive control , 1994 .

[3]  M. Kurosawa,et al.  Ultrasonic motors , 1988, IEEE 1988 Ultrasonics Symposium Proceedings..

[4]  H. Kunkel,et al.  Finite-element analysis of vibrational modes in piezoelectric ceramic disks , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  P. Schnabel,et al.  Dispersion of thickness vibrations of piezoceramic disk resonators , 1978 .

[6]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[7]  Puu-An Juang,et al.  Finite element simulation for a new disc-type ultrasonic stator. , 2003, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[8]  Paul Gonnard,et al.  A low-cost piezoelectric motor using a (1,1) non-axisymmetric mode , 1999 .

[9]  Manabu Aoyagi,et al.  Simplified Equivalent Circuit of Ultrasonic Motor and Its Application to Estimation of Motor Characteristics , 1995 .

[10]  G. Hayward,et al.  Assessing the influence of pillar aspect ratio on the behavior of 1-3 connectivity composite transducers , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  M. Kurosawa,et al.  Design of a hybrid transducer type ultrasonic motor , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  S. Ueha,et al.  Ultrasonic motors : theory and applications , 1993 .

[13]  P. Challande Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  S. Ueha,et al.  Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor , 1985 .

[15]  H. Hirata,et al.  Characteristics estimation of a traveling wave type ultrasonic motor , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[16]  Seiji Hirose,et al.  Vibration-Level Characteristics for Iron-Doped Lead-Zirconate-Titanate Ceramic , 1993 .

[17]  M. Nakaoka,et al.  Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[18]  Paul Gonnard,et al.  A multi-mode piezomotor using a flextensional coupler , 1999 .

[19]  S. Saigal,et al.  Shape sensitivity analysis of piezoelectric structures by the adjoint variable method , 1991 .

[20]  J. S. Wood,et al.  Optimization of the shape of a quartz resonator , 1993 .

[21]  A. Fukumoto,et al.  Dependence of the electromechanical coupling coefficient on the width‐to‐thickness ratio of plank‐shaped piezoelectric transducers used for electronically scanned ultrasound diagnostic systems , 1979 .

[22]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[23]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[24]  Faa-Jeng Lin,et al.  Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control , 1997 .

[25]  S. Hirose,et al.  New design method of piezoelectric transformer considering high-power characteristics of various composition ceramics , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[26]  Noboru Kikuchi,et al.  Design of piezoelectric transducers using topology optimization , 1999 .

[27]  V. Varadan,et al.  Finite-element modeling of the transient response of MEMS sensors , 1997 .

[28]  L. E. Cross,et al.  Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites , 1985, IEEE Transactions on Sonics and Ultrasonics.

[29]  L. Shuyu ANALYSIS OF THE EQUIVALENT CIRCUIT OF PIEZOELECTRIC CERAMIC DISK RESONATORS IN COUPLED VIBRATION , 2000 .

[30]  H. Hirata,et al.  Design of a traveling wave type ultrasonic motor , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[31]  V. Varadan,et al.  Closed loop finite element modeling of active structural damping in the frequency domain , 1997 .

[32]  Bimal K. Bose,et al.  Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive , 1995, IEEE Trans. Ind. Electron..

[33]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[35]  Kenji Uchino,et al.  Ultrasonic linear motors using a multilayered piezoelectric actuator , 1988 .

[36]  Tetsuo Yoshida,et al.  Piezoelectric torsional actuator , 1994 .

[37]  Puu-An Juang,et al.  The transfer function of a new disc-type ultrasonic motor , 2002 .

[38]  Hans-Jürgen Hardtke,et al.  A new disc-type ultrasonic motor , 2001 .

[39]  Paul Gonnard,et al.  Electromechanical conversion in an ultrasonic motor using a non-axisymmetric (1,1) mode , 1997 .

[40]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .