River discharge estimation at daily resolution from satellite altimetry over an entire river basin

Abstract One of the main challenges of hydrological modeling is the poor spatiotemporal coverage of in situ discharge databases which have steadily been declining over the past few decades. It has been demonstrated that water heights over rivers from satellite altimetry can sensibly be used to deal with the growing lack of in situ discharge data. However, the altimetric discharge is often estimated from a single virtual station suffering from coarse temporal resolution, sometimes with data outages, poor modeling and inconsistent sampling. In this study, we propose a method to estimate daily river discharge using altimetric time series of an entire river basin including its tributaries. Here, we implement a linear dynamic model to (1) provide a scheme for data assimilation of multiple altimetric discharge along a river; (2) estimate daily discharge; (3) deal with data outages, and (4) smooth the estimated discharge. The model consists of a stochastic process model that benefits from the cyclostationary behavior of discharge. Our process model comprises the covariance and cross-covariance information of river discharge at different gauges. Combined with altimetric discharge time series, we solve the linear dynamic system using the Kalman filter and smoother providing unbiased discharge with minimum variance. We evaluate our method over the Niger basin, where we generate altimetric discharge using water level time series derived from missions ENVISAT, SARAL/AltiKa, and Jason-2. Validation against in situ discharge shows that our method provides daily river discharge with an average correlation of 0.95, relative RMS error of 12%, relative bias of 10% and NSE coefficient of 0.7. Using a modified NSE-metric, that assesses the non-cyclostationary behavior, we show that our estimated discharge outperforms available legacy mean daily discharge.

[1]  E. Hovmöller,et al.  The Trough-and-Ridge diagram , 1949 .

[2]  Anny Cazenave,et al.  Ob' river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) , 2004 .

[3]  N. Sneeuw,et al.  Basin‐scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets , 2015 .

[4]  P. Gleick The World's Water 2000-2001: The Biennial Report On Freshwater Resources , 1998 .

[5]  Enrico Kurtenbach,et al.  Entwicklung eines Kalman-Filters zur Bestimmung kurzzeitiger Variationen des Erdschwerefeldes aus Daten der Satellitenmission GRACE , 2011 .

[6]  A. Getirana,et al.  Water discharge estimates from large radar altimetry datasets in the Amazon basin , 2012 .

[7]  Frédérique Seyler,et al.  Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS , 2013 .

[8]  Martina Ričko,et al.  Intercomparison and validation of continental water level products derived from satellite radar altimetry , 2012 .

[9]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[10]  A. Cazenave,et al.  SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data , 2011 .

[11]  Nico Sneeuw,et al.  A quantile function approach to discharge estimation from satellite altimetry (ENVISAT) , 2013 .

[12]  Philippe Maillard,et al.  New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: A case study of the São Francisco River, Brazil , 2015 .

[13]  Florian Pappenberger,et al.  A data assimilation approach to discharge estimation from space , 2009 .

[14]  H. Schuh,et al.  Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations , 2009 .

[15]  Michael Durand,et al.  Assimilation of virtual wide swath altimetry to improve Arctic river modeling , 2011 .

[16]  S. Calmant,et al.  Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon , 2012 .

[17]  Delwyn Moller,et al.  Estimating discharge in rivers using remotely sensed hydraulic information , 2005 .

[18]  Frédérique Seyler,et al.  Amazon River discharge estimated from TOPEX/Poseidon altimetry , 2006 .

[19]  Remko Scharroo,et al.  Atmospheric Corrections for Altimetry Studies over Inland Water , 2014, Remote. Sens..

[20]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[21]  Nico Sneeuw,et al.  Spatiotemporal densification of river water level time series by multimission satellite altimetry , 2016 .

[22]  Luca Brocca,et al.  River Discharge Estimation by Using Altimetry Data and Simplified Flood Routing Modeling , 2013, Remote. Sens..

[23]  S. Calmant,et al.  Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions , 2010 .

[24]  Christian Schwatke,et al.  Treating the Hooking Effect in Satellite Altimetry Data: A Case Study along the Mekong River and Its Tributaries , 2016, Remote. Sens..

[25]  Faisal Hossain,et al.  An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope , 2016 .

[26]  Jinyun Guo,et al.  Coastal Gravity Anomalies from Retracked Geosat/GM Altimetry: Improvement, Limitation and the Role of Airborne Gravity Data , 2006 .

[27]  D. Lettenmaier,et al.  Prospects for river discharge and depth estimation through assimilation of swath‐altimetry into a raster‐based hydrodynamics model , 2007 .

[28]  Christian Schwatke,et al.  DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry , 2015 .

[29]  Christian Schwatke,et al.  Multi-Mission Cross-Calibration of Satellite Altimeters: Constructing a Long-Term Data Record for Global and Regional Sea Level Change Studies , 2014, Remote. Sens..

[30]  Yeosang Yoon,et al.  Estimating river bathymetry from data assimilation of synthetic SWOT measurements , 2012 .

[31]  Nico Sneeuw,et al.  Estimating Runoff Using Hydro-Geodetic Approaches , 2014, Surveys in Geophysics.

[32]  Faisal Hossain,et al.  Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data , 2015 .

[33]  Remko Scharroo,et al.  A global positioning system–based climatology for the total electron content in the ionosphere , 2010 .

[34]  F. R. Helmert,et al.  Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate : mit Anwendungen auf die Geodäsie, die Physik und die Theorie der Messinstrumente , 1872 .

[35]  Frédérique Seyler,et al.  Stage‐discharge rating curves based on satellite altimetry and modeled discharge in the Amazon basin , 2016 .

[36]  G. Lannoy,et al.  Assimilating SAR-derived water level data into a hydraulic model: A case study , 2011 .

[37]  Eric F. Wood,et al.  Inverse streamflow routing , 2013 .