Second Order Asymptotic Properties for the Tail Probability of the Number of Customers in the M/G/1 Retrial Queue

When an explicit expression for a probability distribution function $F(x)$ can not be found, asymptotic properties of the tail probability function $\bar{F}(x)=1-F(x)$ are very valuable, since they provide approximations or bounds for system performance, and approaches for computing probability distribution. In this paper, we study tail asymptotic properties for the number of the customers in the $M/G/1$ retrial queueing system. For queueing systems, studies on asymptotic tails have mainly concentrated on the first order asymptotic behavior. To best our knowledge, there is no second order tail asymptotic analysis for retrial queueing models with heavy-tailed service time. Second order asymptotic expansions provide the refined asymptotic results from the first order approximation, and are often more difficult to obtain as expected. The main contribution of this paper is the second order asymptotic analysis for the $M/G/1$ retrial queue.

[1]  Serguei Foss,et al.  Sampling at a Random Time with a Heavy-Tailed Distribution , 2000 .

[2]  J. W. Cohen,et al.  The M/G/1 queue with heavy-tailed service time distribution , 1998, IEEE J. Sel. Areas Commun..

[3]  Colin M. Ramsay,et al.  Exact waiting time and queue size distributions for equilibrium M/G/1 queues with Pareto service , 2007, Queueing Syst. Theory Appl..

[4]  Tiantian Mao,et al.  Closure properties of the second-order regular variation under convolutions , 2017 .

[5]  Bin Liu,et al.  Analyzing retrial queues by censoring , 2010, Queueing Syst. Theory Appl..

[6]  Jesús R. Artalejo,et al.  Accessible bibliography on retrial queues , 1999 .

[7]  Bara Kim,et al.  Tail asymptotics for the queue size distribution in the MAP/G/1 retrial queue , 2010, Queueing Syst. Theory Appl..

[8]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[9]  H. Masuyama Subexponential tail equivalence of the queue length distributions of BMAP/GI/1 queues with and without retrials , 2013, 1310.4608.

[10]  Tuan Phung-Duc,et al.  Single server retrial queues with two way communication , 2013 .

[11]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[12]  J. Templeton Retrial queues , 1999 .

[13]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[14]  Ward Whitt,et al.  Waiting-time tail probabilities in queues with long-tail service-time distributions , 1994, Queueing Syst. Theory Appl..

[15]  Jesús R. Artalejo,et al.  Retrial Queueing Systems , 2008 .

[16]  Gennadi Falin,et al.  A survey of retrial queues , 1990, Queueing Syst. Theory Appl..

[17]  Ward Whitt,et al.  Explicit M/G/1 waiting-time distributions for a class of long-tail service-time distributions , 1999, Oper. Res. Lett..

[18]  Bara Kim,et al.  Exact tail asymptotics for the M/M/m retrial queue with nonpersistent customers , 2012, Oper. Res. Lett..

[19]  S. Resnick,et al.  Second-Order Regular Variation and Rates of Convergence in Extreme-Value Theory , 1996 .

[20]  K. Ng,et al.  Second-order properties of tail probabilities of sums and randomly weighted sums , 2015 .

[21]  K. Sigman,et al.  Sampling at subexponential times, with queueing applications , 1999 .

[22]  Liming Liu,et al.  Tail asymptotics for the queue length in an M/G/1 retrial queue , 2006, Queueing Syst. Theory Appl..

[23]  Sung-Seok Ko,et al.  Tail Asymptotics for the Queue Size Distribution in an M/G/1 Retrial Queue , 2007, Journal of Applied Probability.

[24]  Jie Min,et al.  Refined tail asymptotic properties for the $$M^X/G/1$$ retrial queue , 2018, Queueing Systems.

[25]  E. Willekens,et al.  Asymptotic expansions for waiting time probabilities in an M/G/1 queue with long-tailed service time , 1992, Queueing Syst. Theory Appl..

[26]  Bong Dae Choi,et al.  Single server retrial queues with priority calls , 1999 .

[27]  Harry Joe,et al.  Second order regular variation and conditional tail expectation of multiple risks , 2011 .

[28]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[29]  Jesus R. Artalejo,et al.  Accessible bibliography on retrial queues: Progress in 2000-2009 , 2010, Math. Comput. Model..

[30]  Vidyadhar G. Kulkarni,et al.  Retrial queues revisited , 1998 .

[31]  Bara Kim,et al.  Regularly varying tail of the waiting time distribution in M/G/1 retrial queue , 2010, Queueing Syst. Theory Appl..

[32]  Kouji Yamamuro,et al.  The queue length in an M/G/1 batch arrival retrial queue , 2012, Queueing Syst. Theory Appl..

[33]  Bara Kim,et al.  A survey of retrial queueing systems , 2015, Annals of Operations Research.

[34]  S. Resnick,et al.  Second-order regular variation, convolution and the central limit theorem , 1997 .

[35]  Bin Liu,et al.  Tail asymptotics of the waiting time and the busy period for the $${{\varvec{M/G/1/K}}}$$ queues with subexponential service times , 2014, Queueing Syst. Theory Appl..

[36]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[37]  Bin Liu,et al.  Tail asymptotics for M/M/c retrial queues with non-persistent customers , 2012, Oper. Res..

[38]  M. Meerschaert Regular Variation in R k , 1988 .

[39]  Bara Kim,et al.  Tail asymptotics of the queue size distribution in the M/M/m retrial queue , 2012, J. Comput. Appl. Math..

[40]  Jesús R. Artalejo,et al.  A classified bibliography of research on retrial queues: Progress in 1990–1999 , 1999 .

[41]  Lionel Weiss,et al.  Asymptotic inference about a density function at an end of its range , 1971 .

[42]  Johan Segers,et al.  Risk concentration and diversification: Second-order properties , 2009, 0910.2367.

[43]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[44]  The closure property of 2RV under random sum , 2014 .