Higgs mass range from standard model false vacuum inflation in scalar-tensor gravity

If the Standard Model is valid up to very high energies it is known that the Higgs potential can develop a local minimum at field values around $10^{15}-10^{17}$ GeV, for a narrow band of values of the top quark and Higgs masses. We show that in a scalar-tensor theory of gravity such Higgs false vacuum can give rise to viable inflation if the potential barrier is very shallow, allowing for tunneling and relaxation into the electroweak scale true vacuum. The amplitude of cosmological density perturbations from inflation is directly linked to the value of the Higgs potential at the false minimum. Requiring the top quark mass, the amplitude and spectral index of density perturbations to be compatible with observations, selects a narrow range of values for the Higgs mass, $m_H=126.0\pm 3.5$ GeV, where the error is mostly due to the theoretical uncertainty of the 2-loop RGE. This prediction could be soon tested at the Large Hadron Collider. Our inflationary scenario could also be further checked by better constraining the spectral index and the tensor-to-scalar ratio.

[1]  V. B. Johri,et al.  An inflationary universe in Brans-Dicke theory: a hopeful sign of theoretical estimation of the gravitational constant , 1984 .

[2]  J. Espinosa,et al.  Standard model stability bounds for new physics within LHC reach , 1996, hep-ph/9603227.

[3]  A. Starobinsky,et al.  Inflation scenario via the Standard Model Higgs boson and LHC , 2008, 0809.2104.

[4]  M. Shaposhnikov,et al.  Higgs inflation: consistency and generalisations , 2010, 1008.5157.

[5]  S. Hawking,et al.  Supercooled Phase Transitions in the Very Early Universe , 1982 .

[6]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[7]  M. Sher Electroweak Higgs Potentials and Vacuum Stability , 1989 .

[8]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2005, Living reviews in relativity.

[9]  J. Ellis,et al.  On the Axion, Dilaton, Polonyi, Gravitino and Shadow Matter Problems in Supergravity and Superstring Models , 1986 .

[10]  P. Steinhardt,et al.  Extended inflationary cosmology. , 1989, Physical review letters.

[11]  Top quark and Higgs boson masses: Interplay between infrared and ultraviolet physics , 1996, hep-ph/9606386.

[12]  F. Wilczek,et al.  Running inflation in the Standard Model , 2008, 0812.4946.

[13]  J. García-Bellido,et al.  Preheating in the standard model with the Higgs inflaton coupled to gravity , 2008, 0812.4624.

[14]  A. Strumia,et al.  Gravitational corrections to standard model vacuum decay , 2007, 0712.0242.

[15]  M. Lindner Implications of triviality for the standard model , 1986 .

[16]  M. Hertzberg On inflation with non-minimal coupling , 2010, 1002.2995.

[17]  L. Senatore,et al.  No) Eternal Inflation and Precision Higgs Physics , 2008, 0801.2399.

[18]  M. Sher,et al.  Probing vacuum stability bounds at the fermilab collider , 1989 .

[19]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[20]  M. Shaposhnikov,et al.  Standard Model Higgs boson mass from inflation , 2008, 0812.4950.

[21]  Weinberg,et al.  Bubble nucleation in first-order inflation and other cosmological phase transitions. , 1992, Physical review. D, Particles and fields.

[22]  J. Cembranos,et al.  Quantum Corrections to the Cosmological Evolution of Conformally Coupled Fields , 2009, 0905.1989.

[23]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[24]  On the metastability of the standard model vacuum , 2001, hep-ph/0104016.

[25]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[26]  M. Shaposhnikov,et al.  Standard Model Higgs boson mass from inflation: Two loop analysis , 2009, 0904.1537.

[27]  "Graceful" Old Inflation , 2005, astro-ph/0511396.

[28]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[29]  M. Fukugita,et al.  Baryogenesis without grand unification , 1986 .

[30]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[31]  J. Casas,et al.  Model-independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings , 1993, hep-ph/9308325.

[32]  G. Parisi,et al.  Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories , 1979 .

[33]  A. Notari,et al.  Standard model false vacuum inflation: correlating the tensor-to-scalar ratio to the top quark and Higgs boson masses. , 2011, Physical review letters.

[34]  A. Liddle,et al.  COBE, gravitational waves, inflation and extended inflation , 1992, astro-ph/9208007.

[35]  E. Kolb,et al.  Cosmological Problems for the Polonyi Potential , 1983 .

[36]  P. Q. Hưng Vacuum Instability and New Constraints on Fermion Masses , 1979 .

[37]  G. Giudice,et al.  Cosmological implications of the Higgs mass measurement , 2007, 0710.2484.

[38]  Scalar-tensor gravity in an accelerating universe , 2000, gr-qc/0009034.