Landmark Matching via Large Deformation Diffeomorphisms on the Sphere

This paper presents a methodology and algorithm for generating diffeomorphisms of the sphere onto itself, given the displacements of a finite set of template landmarks. Deformation maps are constructed by integration of velocity fields that minimize a quadratic smoothness energy under the specified landmark constraints. We present additional formulations of this problem which incorporate a given error variance in the positions of the landmarks. Finally, some experimental results are presented. This work has application in brain mapping, where surface data is typically mapped to the sphere as a common coordinate system.

[1]  D'arcy W. Thompson On Growth and Form , 1945 .

[2]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[3]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[4]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[5]  G. Wahba Spline models for observational data , 1990 .

[6]  Fred L. Bookstein,et al.  Morphometric Tools for Landmark Data. , 1998 .

[7]  L. Amodei,et al.  A vector spline approximation , 1991 .

[8]  Nira Dyn,et al.  Image Warping by Radial Basis Functions: Application to Facial Expressions , 1994, CVGIP Graph. Model. Image Process..

[9]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[10]  F. J. Narcowich,et al.  Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold , 1995 .

[11]  Jerry L Prince,et al.  A computerized approach for morphological analysis of the corpus callosum. , 1996, Journal of computer assisted tomography.

[12]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[13]  Michael I. Miller,et al.  On The Geometry and Shape of Brain Sub-Manifolds , 1997, Int. J. Pattern Recognit. Artif. Intell..

[14]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[15]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[16]  U. Grenander,et al.  Hippocampal morphometry in schizophrenia by high dimensional brain mapping. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[18]  Michael I. Miller,et al.  Landmark matching on brain surfaces via large deformation diffeomorphisms on the sphere , 1999, Medical Imaging.

[19]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[20]  Laurent Younes,et al.  Optimal matching between shapes via elastic deformations , 1999, Image Vis. Comput..

[21]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .

[22]  Abraham Z. Snyder,et al.  Surface-Based Analyses of the Human Cerebral Cortex , 1999 .

[23]  S. Joshi,et al.  Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus , 2000, Neurology.

[24]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[25]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[26]  Laurent Younes,et al.  Geodesic Interpolating Splines , 2001, EMMCVPR.

[27]  Stephen R. Marsland,et al.  Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms , 2002, BMVC.

[28]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[29]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[30]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[31]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.